The Korean Physical Society 06130 22, Teheran-ro 7-gil, Gangnam-gu, Seoul, Republic of Korea 610 Representation : Suk Lyun HONG TEL: 02-556-4737 FAX: 02-554-1643 E-mail : webmaster@kps.or.kr Copyright(C) KPS, All rights reserved.
30 May 2022 to 4 June 2022
Virtual Seoul
Asia/Seoul timezone

The violation of equivalence principle and four neutrino oscillations for long baseline neutrinos

Not scheduled
5m
Virtual Seoul

Virtual Seoul

Poster Neutrino oscillation Poster

Description

Violation of equivalence principle predicts that neutrinos of different flavor couple differently with gravity. Such a scenario can give rise to gravity induced flavor oscillations in addition to the usual mass flavor neutrino oscillations during the neutrino propagation. Even if the equivalence principle is indeed violated, their measure will be extremely small. We explore the possibility to probe the violation of equivalence principle (VEP) for the case of long baseline (LBL) neutrinos in a 4-flavor neutrino framework (3 active + 1 sterile) where both mass and gravity induced oscillations are considered. To this end, we have explicitly calculated the oscillation probability in 4-flavor framework that includes in addition to the mass-flavor mixing in matter, the gravity-flavor mixing also. The energy eigenvalues are then obtained by diagonalizing such a 4-flavor mixing matrix. The formalism is then employed to estimate the wrong and right sign muon yields at a far detector for neutrinos produced in a neutrino factory and travel through the Earth matter. These results are compared with the similar estimations when the usual three active neutrinos are considered.

Primary author

Dr MADHURIMA PANDEY (HALDIA INSTITUTE OF TECHNOLOGY, HALDIA)

Co-authors

Prof. Debasish Majumdar (Saha Institute of Nuclear Physics) Dr Amit Dutta Banik (Key Laboratory of Quark and Lepton Physics (MoE) and Institute of Particle Physics, Central China Normal University, Wuhan, China) Mr Ashadul Halder (Department of Physics, St. Xavier’s College,)

Presentation materials

There are no materials yet.