The Korean Physical Society 06130 22, Teheran-ro 7-gil, Gangnam-gu, Seoul, Republic of Korea 610 Representation : Tae Won NOH TEL: 02-556-4737 FAX: 02-554-1643 E-mail : Copyright(C) KPS, All rights reserved.
30 May 2022 to 4 June 2022
Virtual Seoul
Asia/Seoul timezone

Muon antineutrino charged-current neutral pion production differential cross-section measurement in the NOvA near detector

Not scheduled
Virtual Seoul

Virtual Seoul

Poster Neutrino interactions Poster


As a long-baseline neutrino oscillation experiment, NOvA is primarily designed to measure the muon (anti)neutrino disappearance and electron (anti)neutrino appearance in the off-axis Fermilab NuMI beam. It uses two functionally identical liquid scintillator detectors separated by 810 km and a narrow band beam centered around 2 GeV. Energetic neutral pions produced in $\Delta$ resonance, deep-inelastic interactions or final state interactions are a significant background to the electron (anti)neutrino appearance measurement as the photons coming from neutral pion decay may be misidentified as electrons(positrons). The high statistics antineutrino mode data in the near detector can be used to perform a measurement of the differential cross-section for muon antineutrino charged-current neutral pion production. The analysis uses a convolutional neural network trained on individually simulated particles to identify neutral pions in the final state. A data-driven template fit approach is used to constrain backgrounds. The assessment of systematic uncertainties is also presented.

Collaboration NOvA Collaboration

Primary author

Fan Gao (University of Pittsburgh)

Presentation Materials