The Korean Physical Society 06130 22, Teheran-ro 7-gil, Gangnam-gu, Seoul, Republic of Korea 610 Representation : Suk Lyun HONG TEL: 02-556-4737 FAX: 02-554-1643 E-mail : webmaster@kps.or.kr Copyright(C) KPS, All rights reserved.
30 May 2022 to 4 June 2022
Virtual Seoul
Asia/Seoul timezone

Fast electromagnetic field and electron tracking simulations for the KATRIN main spectrometer

Not scheduled
5m
Virtual Seoul

Virtual Seoul

Poster Neutrino mass Poster

Speakers

Benedikt Bieringer (University of Muenster) Fabian Block (Karlsruhe Institute of Technology) Alexey Lokhov (Universtity of Muenster) Alessandro Schwemmer (Max Planck Institute for Physics, Munich & Technical University of Munich)

Description

This poster shows the use of Zonal Harmonic Field Expansion for fast electric and magnetic field simulations with the superposition principle, and for near-realtime adiabatic electron tracking. Various measurements in the KATRIN experiment require special main spectrometer coil current and electrode potential configurations, most prominently the recent Shifted Analyzing Plane background reduction method (doi: 10.1140/epjc/s10052-022-10220-4). The high-performant simulations presented here enable interactive design and improvement of these configurations by simulation of their spectrometer properties.

We acknowledge the support of Helmholtz Association (HGF); Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, 05A17PDA, 05A17WO3, 05A20VK3, 05A20PMA and 05A20PX3); Helmholtz Alliance for Astroparticle Physics (HAP); the doctoral school KSETA at KIT; Helmholtz Young Investigator Group (VH-NG-1055); Max Planck Research Group (MaxPlanck@TUM); Deutsche Forschungsgemeinschaft DFG (Research Training Group grant nos. GRK 1694 and GRK 2149); Graduate School grant no. GSC 1085-KSETA and SFB-1258 in Germany; Ministry of Education, Youth and Sport (CANAM-LM2015056, LTT19005) in the Czech Republic; the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-SC0011091 and DE-SC0019304; and the Federal Prime Agreement DE-AC02-05CH11231 in the USA. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement no. 852845). We thank the computing cluster support at the Institute for Astroparticle Physics at Karlsruhe Institute of Technology, Max Planck Computing and Data Facility (MPCDF), and National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

Collaboration KATRIN

Primary authors

Benedikt Bieringer (University of Muenster) Fabian Block (Karlsruhe Institute of Technology) Alexey Lokhov (Universtity of Muenster) Alessandro Schwemmer (Max Planck Institute for Physics, Munich & Technical University of Munich)

Presentation materials