The Korean Physical Society 06130 22, Teheran-ro 7-gil, Gangnam-gu, Seoul, Republic of Korea 610 Representation : Tae Won NOH TEL: 02-556-4737 FAX: 02-554-1643 E-mail : webmaster@kps.or.kr Copyright(C) KPS, All rights reserved.
30 May 2022 to 4 June 2022
Virtual Seoul
Asia/Seoul timezone

Aspects of High Scale Leptogenesis with Low-Energy Leptonic CP Violation

Not scheduled
20m
Virtual Seoul

Virtual Seoul

Poster Neutrinos and cosmology Poster

Speaker

Alessandro Granelli (SISSA)

Description

Using the density matrix equations (DME) for high scale leptogenesis based on the type I seesaw mechanism, in which the CP violation (CPV) is provided by the low-energy Dirac or/and Majorana phases of the neutrino mixing (PMNS) matrix, we investigate the 1-to-2 and the 2-to-3 flavour regime transitions, where the 1, 2 and 3 leptogenesis flavour regimes in the generation of the baryon asymmetry of the Universe $\eta_B$ are described by the Boltzmann equations. Concentrating on the 1-to-2 flavour transition we determine the general conditions under which $\eta_B$ goes through zero and changes sign in the transition. Analysing in detail the behaviour of $\eta_B$ in the transition in the case of two heavy Majorana neutrinos $N_{1,2}$ with hierarchical masses, $M_1 \ll M_2$, we find, in particular, that i) the Boltzmann equations in many cases fail to describe correctly the generation of $\eta_B$ in the 1, 2 and 3 flavour regimes, ii) the 2-flavour regime can persist above (below) $\sim 10^{12}$ GeV ($\sim 10^9$ GeV), iii) the flavour effects in leptogenesis persist beyond the typically considered maximal for these effects leptogenesis scale of $10^{12}$ GeV. We further determine the minimal scale $M_{1\text{min}}$ at which we can have successful leptogenesis when the CPV is provided only by the Dirac or Majorana phases of the PMNS matrix as well as the ranges of scales and values of the phases for having successful leptogenesis. We show, in particular, that when the CPV is due to the Dirac phase $\delta$, there is a direct relation between the sign of $\sin \delta$ and the sign of $\eta_B$ in the regions of viable leptogenesis in the case of normal hierarchical light neutrino mass spectrum; for the inverted hierarchical spectrum the same result holds for $M_1 < 10^{13}$ GeV. The considered different scenarios of leptogenesis are testable and falsifiable in low-energy neutrino experiments.

Primary authors

Presentation Materials