Description
The KATRIN collaboration aims to determine the effective electron anti-neutrino mass with a sensitivity of 0.2 eV/c2 (90 % CL). This will be achieved by measuring the endpoint region of the tritium β-electron spectrum. In addition to the neutrino mass search, the measured β-spectrum can be analysed for an imprint of sterile neutrinos in the eV-range.
The first and second KATRIN science run were taken in 2019. Between these two campaigns the source activity was substantially increased leading to an improvement in statistical uncertainties.
The analysis and results of the light sterile neutrino search of the first and second campaign will be presented on the poster including improved exclusion contours.
We acknowledge the support of Helmholtz Association (HGF); Ministry for Education and Research BMBF (05A17PM3, 05A17PX3, 05A17VK2, 05A17PDA, 05A17WO3, 05A20VK3, 05A20PMA and 05A20PX3); Helmholtz Alliance for Astroparticle Physics (HAP); the doctoral school KSETA at KIT; Helmholtz Young Investigator Group (VH-NG-1055); Max Planck Research Group (MaxPlanck@TUM); Deutsche Forschungsgemeinschaft DFG (Research Training Group grant nos. GRK 1694 and GRK 2149); Graduate School grant no. GSC 1085-KSETA and SFB-1258 in Germany; Ministry of Education, Youth and Sport (CANAM-LM2015056, LTT19005) in the Czech Republic; the Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41033, DE-FG02-97ER41041, DE-SC0011091 and DE-SC0019304; and the Federal Prime Agreement DE-AC02-05CH11231 in the USA. This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement no. 852845). We thank the computing cluster support at the Institute for Astroparticle Physics at Karlsruhe Institute of Technology, Max Planck Computing and Data Facility (MPCDF), and National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.
Collaboration | KATRIN |
---|