

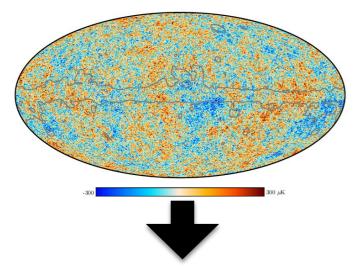
Setting the stage

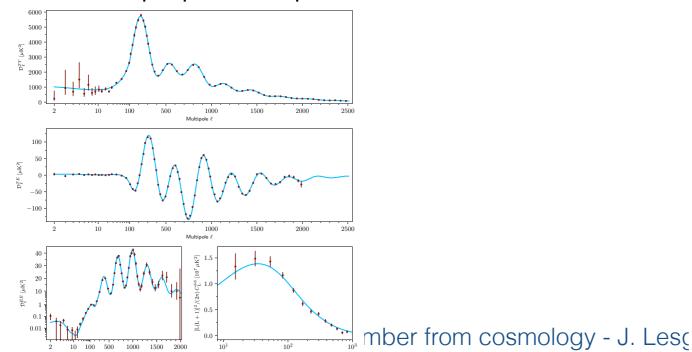
- Neutrino expected to be in thermal equilibrium until T~1 MeV, number density = 68% of CMB photons for T<0.5 MeV: constitute the Cosmic Neutrino background ($C\nu$ B)
- Indirect proof of CνB from BBN+primordial abundances, CMB anisotropies, and large scale structure of the universe
- $N_{\rm eff} = \frac{\rm (energy\ density\ of\ neutrinos\ +\ possible\ other\ light/massless\ relics)}{\rm (energy\ density\ of\ one\ neutrino\ family\ in\ instantaneous\ decoupling\ limit)}$
- $N_{\rm eff} \simeq 3$ in absence of extra relics (light sterile ν s, axions, dark radiation)

The Cosmic Neutrino Background ($C\nu B$)

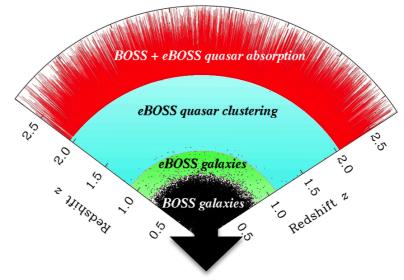
- Precise study of neutrino decoupling (flavour effects, QED corrections) predict $N_{\rm eff}=3.044$ (Froustey et al. 2020, Bennett et al. 2020)
- Today, $n_{\nu}^{0} = 339.5 \text{cm}^{-3}$, $T_{\nu}^{0} = 1.7 \times 10^{-4} \text{eV} = 1.9 \text{ K}$
- Direct detection very difficult due to low momentum (high energy resolution, background events...)
- Future attempts with PTOLEMY (Tritium β -decay stimulated by $C\nu$ B neutrino capture) \Rightarrow talk by M. Messina (Wednesday)

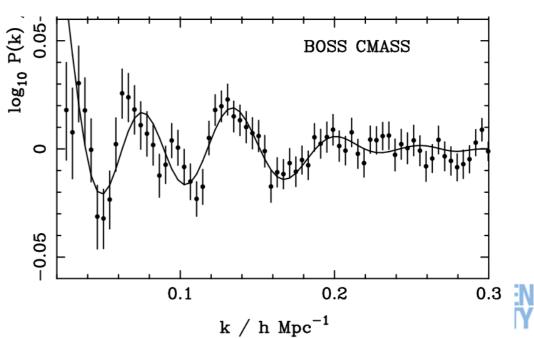
The Cosmic Neutrino Background ($C\nu B$)


- $T_{\nu} < |\Delta m^2|_{
 m sol.atm}^{1/2}$: at least 2 mass eigenstates non-relativistic today
- Each eigenstate:
 - radiation till non-relativistic transition at $z_{\rm NR} \sim m_i/[0.53~{\rm meV}]-1$,
 - then, fraction of Dark Matter
- Today $\Omega_{\nu}=(\Sigma_i m_i)/[93.12\,h^2 {\rm eV}] \ge$ 0.5% of matter components (Mangano et al. 2005, updated by Froustey & Pitrou);
- cosmology probes this combination, i.e. $M_{\nu} = \sum_i m_i$, not enough sensitivity to individual m_i 's (JL, Pastor, Perotto 2004; ...; Archidiacono, JL, Hannestad 2020)

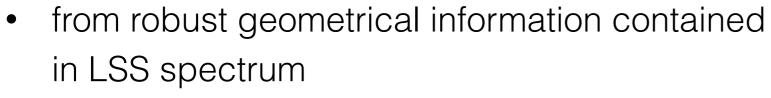


Cosmological observables

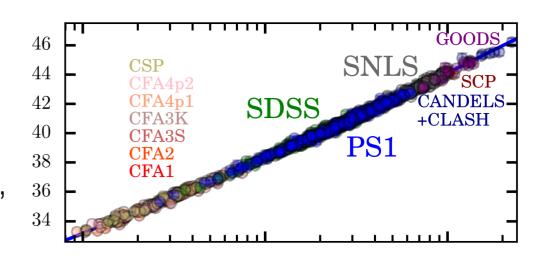

CMB temperature/polarisation maps

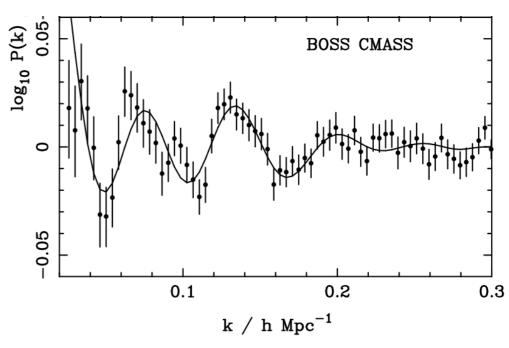

CMB temp./polar. spectrum

Galaxy distribution and lensed shapes



LSS (matter) power spectrum

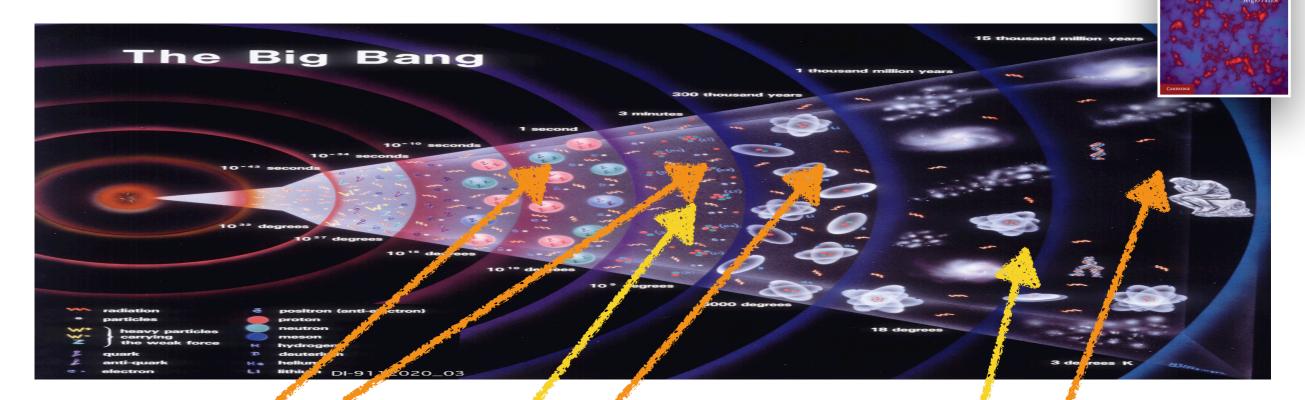

Cosmological observables


- Probes of background expansion:
 - from distance ladder (luminosity of cepheids, supernovae)

(BAO = Baryon Acoustic Oscillations,

RSD = Redshift Space Distorsions)

Primordial Deuterium / Helium and theory of BBN



Neutrino effects on cosmological observables

JL & Pastor Pys. Rep. 2016; JL, Mangano, Miele, Pastor "Neutrino Cosmology" CUP;

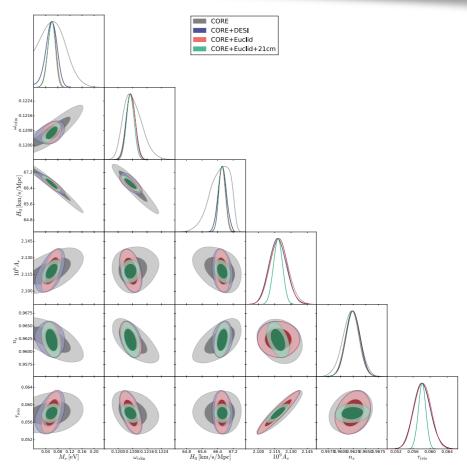
Drewes et al. 2016; Gerbino & Lattanzi 2017; RPP of PDG: JL & Verde "Neutrinos in Cosmology";

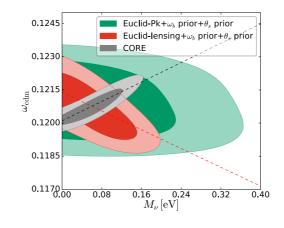
relativistic
neutrino contribution
to early expansion

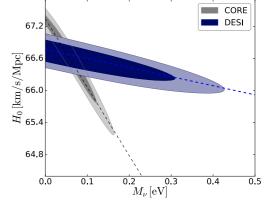
metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino free-streaming slows down CMB photon clustering

neutrino free streaming slows down late ordinary/dark matter clustering




Cosmological bounds are model dependent!


Global fit of cosmological model to data: bound are model-dependent (can be relaxed when adding new ingredients)

Model-dependence decreases quickly over the years (more types of independent observations, smaller error bars)

e.g. Archidiacono et al. 1610.09852

What do we do with cosmological tensions appearing in Λ CDM framework:

- on current Hubble rate H_0 ? (5 σ , dominated by one collaboration, SH0ES Riess et al. 2112.04510)
- on matter spectrum amplitude S_8 ? (2 3σ , found by many collaborations: KiDS, DES, CHFTLens, etc.)?

... and to a lesser extent:

- (n_s, Ω_m) tension between Lyman- α forest spectrum and CMB
- Small-scale CMB polarisation anisotropies from ACT versus SPT-3G
- internal consistency of Planck data (" A_L anomaly" -> not a concern for me (fluctuating unphysical parameter, look-elsewhere effect, decreased to 1.5 σ in recent re-analysis of Rosenberg et al. 2022)

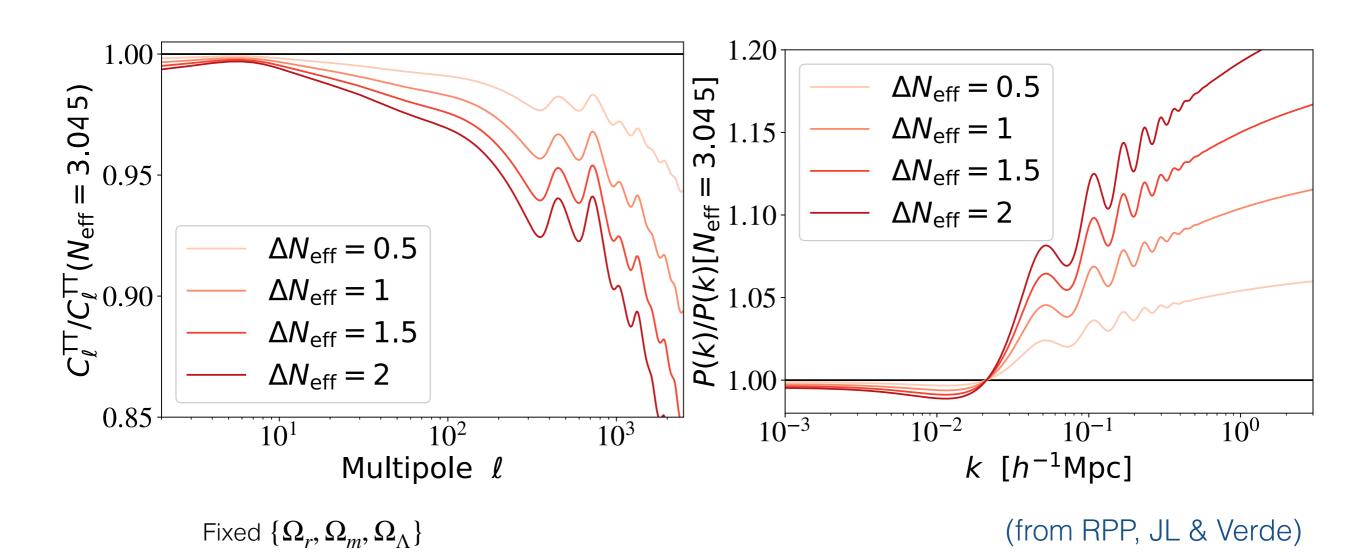
What do we do with cosmological tensions appearing in Λ CDM framework:

- 1. Assume they will go away (systematics). Fit neutrino parameters ($N_{\rm eff}, M_{\nu}$) in:
 - 1. Minimal Λ CDM
 - 2. Most obvious extensions (light relics, dynamical DE, curvature, T/S...)
 - 3. Models with more freedom (beyond-Einstein gravity, non-trivial Dark Sector...)
- 2. Assume they are "real", investigate new scenarios accommodating the tension, explore neutrino bounds within that framework

What do we do with cosmological tensions appearing in Λ CDM framework:

- 1. Assume they will go away (systematics). Fit neutrino parameters ($N_{
 m eff}, M_{
 u}$) in:
 - 1. Minimal Λ CDM
 - 2. Most obvious extensions (light relics, dynamical DE, curvature, T/S...)
 - 3. Models with more freedom (beyond-Einstein gravity, non-trivial Dark Sector...)⇒ this talk
- Assume they are "real", investigate new scenarios accommodating the tension, explore neutrino bounds within that framework ⇒ talk by O. Mena

Impact of $N_{\rm eff}$


Measuring $N_{\rm eff}$ or $\Delta N_{\rm eff} = N_{\rm eff} - 3.044$ with cosmological observables may :

- Confirms presence of $C\nu B$
- Confirm standard thermal history of the universe (reheating, neutrinos decoupling, positron annihilation...)
- Bound non-thermal corrections from e.g. late decays into neutrinos
- Bound existence of additional light relics (light sterile ν s, axions, dark radiation...)
- Together with Helium abundance, bound new physics around time of Nucleosynthesis

Impact of $N_{\rm eff}$

Measurement of $N_{\rm eff}$

(from RPP, JL & Verde)

	Model	95%CL	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + N_{ m eff}$	$2.92^{+0.36}_{-0.37}$	[22]
$\overline{\text{CMB} + \text{background evolution} + \text{LSS}}$			
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda { m CDM} + N_{ m eff}$	$2.99^{+0.34}_{-0.33}$	$\boxed{[22]}$
" $+ BAO + R21$	$\Lambda { m CDM} + N_{ m eff}$	$3.34 \pm 0.14 (66\% CL)$	[11]
Pl18[TT,TE,EE+lowE+lensing] + BAO	" +5-params.	$2.85 \pm 0.23 \; (68\%CL)$	[23]

 Compatible with BBN + Helium (+ Deuterium) bounds (even after LUNA update: see Pisanti et al. 2021, Pitrou et al. 2021)

Measurement of $N_{ m eff}$

(from RPP, JL & Verde)

	Model	95%CL	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + N_{ m eff}$	$2.92^{+0.36}_{-0.37}$	[22]
$\overline{\text{CMB} + \text{background evolution} + \text{LSS}}$			
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda { m CDM} + N_{ m eff}$	$2.99^{+0.34}_{-0.33}$	$\overline{[22]}$
" $+ BAO + R21$	$\Lambda { m CDM} + N_{ m eff}$	$3.34 \pm 0.14 (66\% CL)$	[11]
Pl18[TT,TE,EE+lowE+lensing] + BAO	" $+5$ -params.	$2.85 \pm 0.23 \; (68\%CL)$	[23]

Provides bounds on neutrino asymmetry

$$\left| \sum_{\alpha=e,\mu,\tau} \frac{n_{\nu_{\alpha}}^{\text{dec}} - \bar{n}_{\nu_{\alpha}}^{\text{dec}}}{n_{\gamma}^{\text{dec}}} \right| < 0.084 \qquad (95\%, \text{ PlanckTT, TE, EE} + \text{lowP} + \text{lensing})$$
(Oldengott & Schwarz 2017)

BBN / Helium more sensitive through beta decay and oscillations

$$-0.071 < \sum_{\alpha = e, \mu, \tau} \frac{n_{\nu_{\alpha}}^{\text{ini}} - \bar{n}_{\nu_{\alpha}}^{\text{ini}}}{n_{\gamma}^{\text{ini}}} < 0.054 \qquad (95\%, \text{ WMAP + Helium}) \qquad (\text{Castorina et al. 2012})$$

Measurement of $N_{ m eff}$

(from RPP, JL & Verde)

	Model	$95\%\mathrm{CL}$	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + N_{ m eff}$	$2.92^{+0.36}_{-0.37}$	[22]
$\overline{\text{CMB} + \text{background evolution} + \text{LSS}}$			
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda { m CDM} + N_{ m eff}$	$2.99^{+0.34}_{-0.33}$	$\boxed{[22]}$
" $+ BAO + R21$	$\Lambda { m CDM} + N_{ m eff}$	$3.34 \pm 0.14 \; (00\% CL)$	[11]
Pl18[TT,TE,EE+lowE+lensing] + BAO	" +5-params.	$2.85 \pm 0.23 \ (68\%CL)$	[23]

• Global fit, in principle model-dependent, in practise not so much for simple extensions of ΛCDM (De Valentino et al. 2020)

Measurement of $N_{ m eff}$

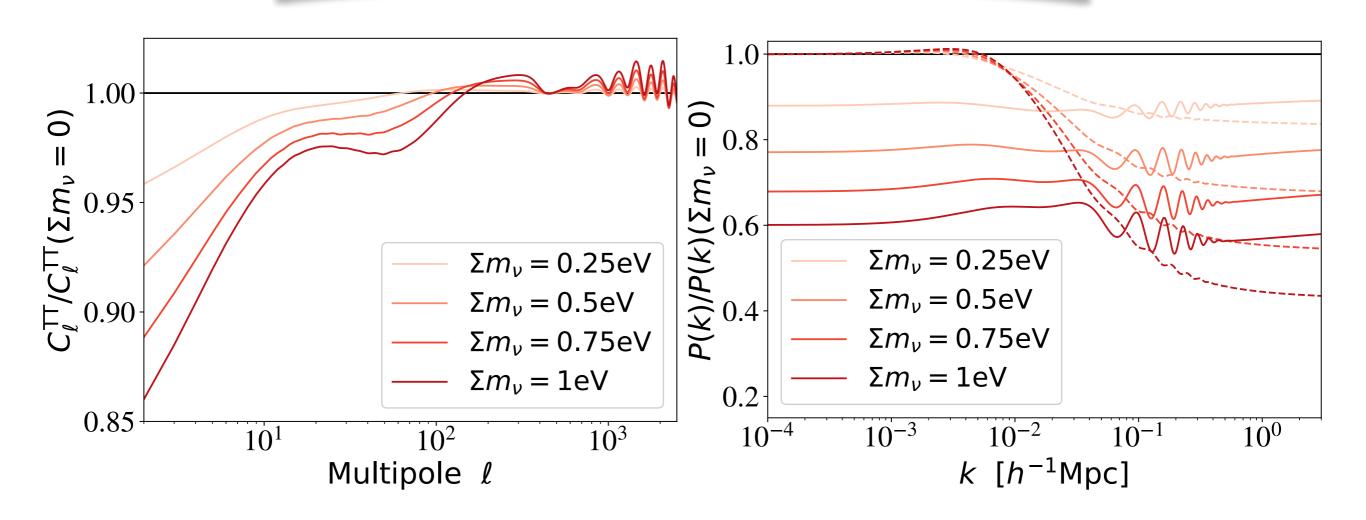
(from RPP, JL & Verde)

	Model	95%CL	Ref.
CMB alone			
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + N_{ m eff}$	$2.92^{+0.36}_{-0.37}$	[22]
$\overline{\text{CMB} + \text{background evolution} + \text{LSS}}$			
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda \text{CDM} + N_{\text{eff}}$	$2.00^{+0.34}_{-0.33}$	$\boxed{[22]}$
" $+ BAO + R21$	$\Lambda { m CDM} + N_{ m eff}$	$3.34 \pm 0.14 \; (68\%CL)$	[11]
	" $+5$ -params.	2.85 ± 0.23 (68%CL)	[23]
			

- Global fit, in principle model-dependent, in practise not so much for simple extensions of ΛCDM (De Valentino et al. 2020)
- Hubble tension ?... positive $H_0-N_{\rm eff}$ correlation. Discussions about $N_{\rm eff}>3$ as a solution. Currently disfavoured.

Probes of $C\nu B$

- measured $N_{
 m eff}$ compatible with prediction 3.044 (although... H_0 tension)
- details of acoustic oscillations in CMB and LSS spectra probe neutrino drag effect : indicate free streaming ultra-relativistic species. $C\nu$ B detected at level of its background and perturbations


(Bashinky & Seljak 2004, Audren et al. 2015, Baumann et al. 2019, ...)

• Limits on non-standard neutrino self-interactions: $\log_{10}(G_{
m eff}{
m MeV^2}) < -0.8$ (Park et al. 2019)

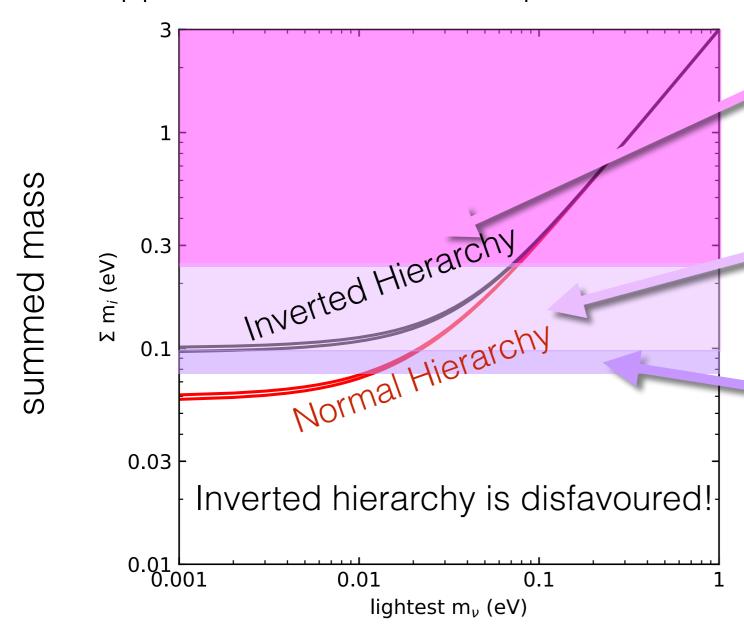
Impact of $\Sigma m_{ u}$

Fixed $\{\omega_b, \omega_c, \tau, \theta_s\}$

(from RPP, JL & Verde)

Bounds on $\Sigma m_ u$

(from RPP, JL & Verde)


	Model	95% CL (eV)	Ref.	
CMB alone				
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	$\boxed{[22]}$	
Pl18[TT,TE,EE+lowE]	$\Lambda { m CDM} + \sum m_{\nu}$	< 0.26	[22]	
CMB + probes of background evolution				
$\overline{\text{Pl18}[\text{TT+lowE}] + \text{BAO}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	$\boxed{[43]}$	
$P118[TT,TE,EE+lowE]+BAO$ ΛCI	$DM + \sum m_{\nu} + 5$ params.	< 0.515	[23]	
$\overline{ ext{CMB} + ext{LSS}}$				
Pl18[TT+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.44	$\boxed{[22]}$	
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda { m CDM} + \sum m_{\nu}$	< 0.24	[22]	
$\overline{\text{CMB} + \text{probes of background evolution} + \text{LSS}}$				
$\overline{\text{Pl18}[\text{TT,TE,EE+lowE}] + \text{BAO} + \text{RSD}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.10	[43] ₂₀	21: new eBOS
$Pl18[TT+lowE+lensing] + BAO + Lyman-\alpha$	$\Lambda { m CDM} + \sum m_{\nu}$	< 0.087	[44]	and DES data
Pl18[TT,TE,EE+lowE] + BAO + RSD + Pantheon	DES $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[45]	
PI18[TT,TE,EE+lowE+lensing] + BAO + RSD + Pantheon.	Λ CDM+ $\sum m_{ u}$	< 0.087	[dVGM]	

Bounds on $\Sigma m_ u$

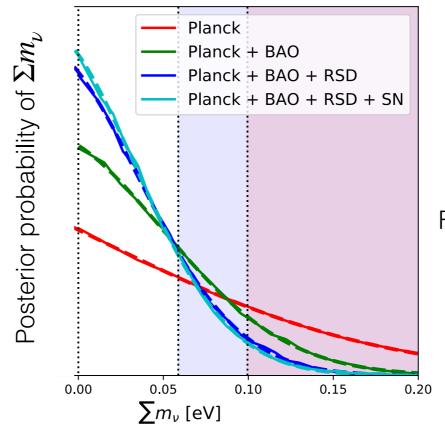
95%CL upper bounds on Σ_im_i for 7 parameters

CMB temperature and polarisation from Planck $\Sigma_i m_i < 260 \text{ meV } (95\%\text{CL})$

CMB + conservative LSS information (BAO + RSD from BOSS): $\Sigma_i m_i < 100 \text{ meV} (95\%\text{CL})$

CMB + BAO + more agressive LSS: either: + Ly- α from BOSS or: + lensing + RSD + SNIa) $\Sigma_{i}m_{i}$ < 87 meV (95%CL)

Palanque-Delabrouille et al. 2020 Di Valentino et al. 2021



Shall we be concerned about posterior peaking in zero?:

• $\sigma(\Sigma m_{\nu})$ reducing to ~0.05 eV, and still no hint of a posterior peaking

anywhere above 0 eV

From Alam et al. 2020 (eBOSS)

- May be the consequence of only the randomness of instrumental errors + underlying theory (cosmic variance), with still acceptable level of probability
- Or, like tensions, sign of systematics or using wrong model...

Bounds on $\Sigma m_ u$

(from RPP, JL & Verde)

	Model	95% CL (eV)	Ref.
CMB alone			
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	$\boxed{[22]}$
Pl18[TT,TE,EE+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.26	[22]
CMB + probes of background evolution			
$\overline{\text{Pl18}[\text{TT+lowE}] + \text{BAO}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	$\boxed{[43]}$
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda \text{CDM} + \sum m_{\nu} + 5 \text{ params.}$	< 0.515	3]
$\overline{ ext{CMB} + ext{LSS}}$		1	
Pl18[TT+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.44	$\boxed{[22]}$
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.24	[22]
$\overline{\text{CMB} + \text{probes of background evolution} + \text{LS}}$	SS		
$\overline{\text{Pl18}[\text{TT,TE,EE+lowE}] + \text{BAO} + \text{RSD}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.10	$\boxed{[43]}$
$Pl18[TT+lowE+lensing] + BAO + Lyman-\alpha$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.087	[44]
Pl18[TT,TE,EE+lowE] + BAO + RSD + Pantheon	+ DES Λ CDM+ $\sum m_{\nu}$	< 0.13	[45]
PI18[TT,TE,EE+lowE+lensing] + BAO + RSD + Panthe	on. Λ CDM+ $\sum m_{\nu}$	< 0.087	[dVGM]

- Crucial role of CMB (WMAP+SPT: similar bounds, WMAP+ACT: twice weaker bounds)
 (Di Valentino & Melchiorri 2021)
- Robustness against simple LCDM extensions (De Valentino et al. 2020)
- Negative $M_{\nu}-H_0$ correlation: Inclusion of direct Hubble measurement from SH0ES makes bounds even stronger but subject to caution

Is inverted hierarchy excluded?

Calculation of Bayesian evidence using laboratory (oscillations, KATRIN)+ cosmological data:

- Decisive evidence for NH according to Jimenez et al. 2022 driven by cosmology
- Only moderate evidence for NH according to Gariazzo et al. 2022 driven by oscillation data

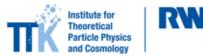
Main issue = Bayesian prior dependence of the results (discussed by both groups). Second group ensures that prior alone gives 1:1 odds for NH/IH.

My take: two many self-consistency issues in cosmological data / standard model for including current bounds in such detailed statistical analyses.

If S_8 tension is "real", but not H_0 tension

- Naive explanation: $M_{
 u}$ ~0.6eV... ruled out by CMB in all simple Λ CDM extensions
- List of alternative mechanisms reducing growth of matter fluctuations on small scales and compatible with CMB, BAO, Weak Lensing, Lyman- α ...
- Modified gravity (e.g. f(R)), cold+warm DM, (self-)interacting DM, DM with 2-body decay...
 (Boyarsky et al. 0812.0010; Buen-Abad et al. 1708.09406; Becker et al. 2010.04074; Heimersheim et al. 2008.08486; Abellan et al. 2008.09615; ...)

Neutrino mass bounds depend on each case, but usually CMB+BAO sets barrier around 0.13 eV, unlikely to be challenged by these models which have minimal impact on CMB...


If H_0 tension is "real"

- Naive explanation in terms of $N_{
 m eff}\sim 5$ ruled out by both CMB and BBN
- No very simple alternative compatible with CMB, BAO, Pantheon (= high-z supernovae)... Price to pay is high (Schöneberg et al. 2021):
 - 1. Shifted recombination (variation of particle masses (Hart & Chluba 2020)? Inhomogeneous recombination (Jedamzik & Pogosian 2020)?);
 - 2. Non-minimal Dark Radiation: self-interactions, density increasing after BBN (possible precise scenarios: Majoron (Escudero & Witte 2021), Wess-Zumino (Aloni et al. 2011), ...);
 - 3. Early Dark Energy; Modified gravity ...
- Neutrino mass bounds depend on each case, could be significantly released (e.g. like for self-interacting neutrinos of Cyr-Racine et al.), more work needed...
- Same if both tensions are ``real''....

Prospects on mass measurement

- Future LSS surveys: DESI, Euclid, LSST, SPHEREx, SKA...
- Future CMB observations: Simons Observatory, CMB-Stage4, LiteBird
- Planck+Euclid: at least $\sim 2\sigma$
- Should grow to 3-4 σ with new CMB data (SO, CMB-S4) and better LSS data
- Could reach 5σ after better measurements of reionization and 21cm fluctuations (radioastronomy: SKA, ...)
- Null detection would be revolutionary (NSI, neutrino decay...)
- Possible shift of paradigm could reshuffle conclusions...

