# **NEUTRINO 2022**

XXX International Conference on Neutrino Physics and Astrophysics

Virtual Seoul May 30 (Mon) - June 4 (Sat), 2022





# Sterile neutrinos: experimental results with reactors

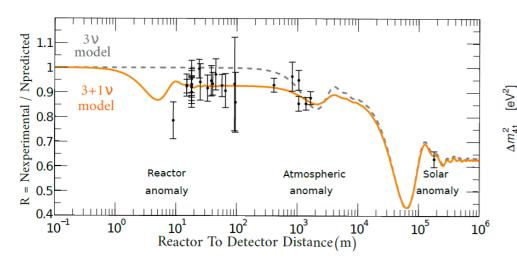
Matthieu Licciardi (LPSC Grenoble, CNRS/IN2P3)










# Physics case: indications for a sterile neutrino

2.Gallium anomaly

GALLEX, SAGE + BEST

# 1.Reactor Antineutrino Anomaly (RAA)

- Apparition in 2011 [PRD 83 (2011) 073006] after reevalutation of neutrino fluxes (Huber [PRC 84 (2011) 024617], Mueller [PRC 83 (2011) 054615])
- Could be explained by additionnal short-distance oscillation to a sterile state

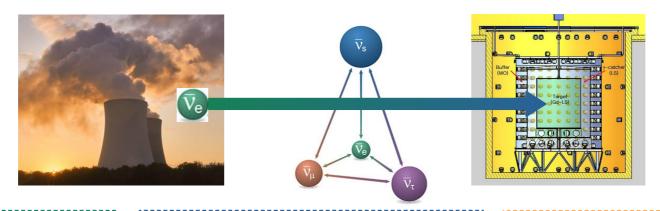


- Experimental challenge of the last decade : probe oscillations with L≈10m
- Complementary constraints from SBL and VSBL experiments

→ See Talk by Joachim Kopp ←

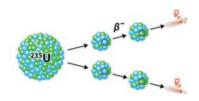
### 3. $v_{\mu}$ disappearance anomalies Giunti et al, arXiv:2110.06820 LSND, MiniBooNE L = 1m 10 $\Delta m_{41}^2$ L = 100 mRates+Evolution $10^{-1}$ . = 1km LSND 90% CL HKSS Gallium **Short baseline (S** $10^{-2}$ $10^{-1}$ $\sin^2 2\vartheta_{oc}$ PRL 121 (2018) 221801




# A world-wide effort with reactors

Key aspect : distance to reactor (L)  $\Delta m_{41}^2 \simeq 2-10 \, \, {
m eV}^2 imes \left( \frac{10 \, m}{L} \right)$ 






# Reactor antineutrinos



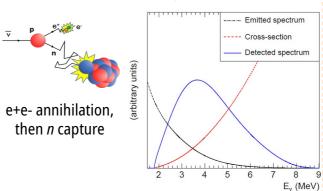
### **Antineutrino flux**

Fission fragments of U, Pu undergo  $\beta$ -decays  $\rightarrow v_e$  flux



→ See Reactor Neutrino session ←

### **Oscillation**


### Survival probability

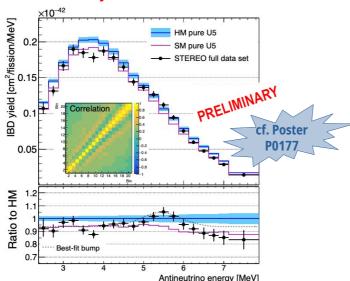
$$\begin{split} P_{ee} &= 1 - \cos^4\theta_{41}\sin^2(2\theta_{13})\sin^2\left(\frac{\Delta m_{31}^2L}{4E_{\bar{\nu}_e}}\right) - \\ &\sin^2(2\theta_{41})\sin^2\left(\frac{\Delta m_{41}^2\ L}{4E_{\bar{\nu}_e}}\right) & \text{for L $\approx$ 1km} \end{split}$$

# Oscillation peak (highest sensitivity)

$$\Delta m_{41}^2 \simeq 2 - 10 \text{ eV}^2 \times \left(\frac{10 \text{ m}}{L}\right)$$

# Detection Inverse β-decay : $\vec{v}_{p} \rightarrow e^{+} n$

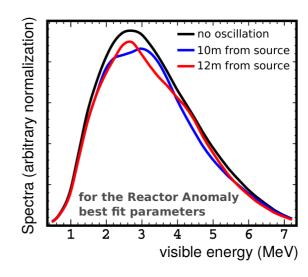



Useful energy range is E<sub>v</sub> ~ 2-8 MeV



# The importance of relative measurements

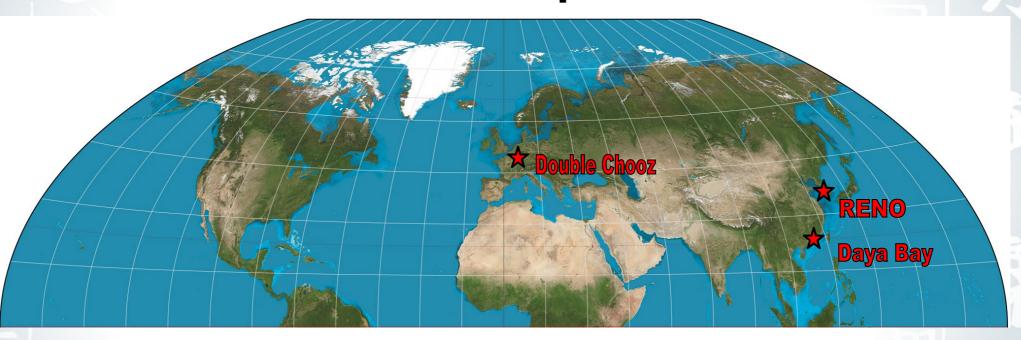
- Flux predictions do not match measurements
  - Notably the « 5 MeV bump », first seen by Daya Bay, RENO, Double Chooz


### STEREO final measurement



→ Comparison of baselines gives model- independent results

- Oscillations induce spectral distortions between baselines
  - Comparing data(L) to no-oscillation prediction depends on flux models
  - Comparing data(L) to data(L') is independent of flux models


$$P_{ee} = P_{ee}(L/E)$$



- Different detectors
- Different detector parts
- Movable detector



# **Short-baseline experiments**

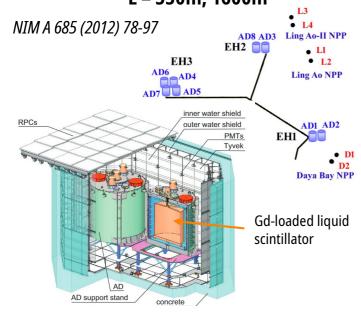


# **Short baseline (SBL)**

- L ~ O(1 km)
- restricted to smaller  $\Delta m^2$
- larger detectors possible
- no reactor background

# **Commercial reactors (LEU)**

- high power, high statextended core (Ø ≈ few m)
  - mixed isotopes (irrelevant)

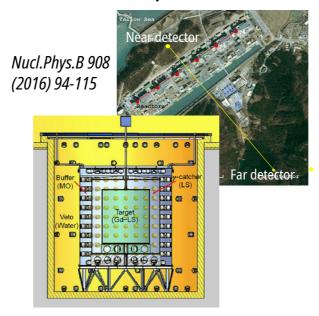



# Short-baseline experiments



# **Daya Bay**

Daya Bay and Ling Ao (II) NPPs **L = 550m, 1600m** 

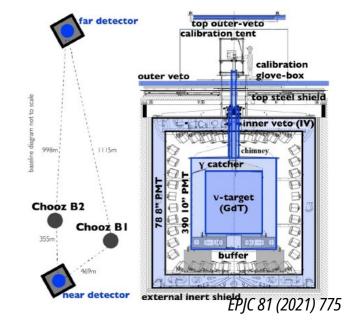



- 8 identical detectors (4 NDs + 4 FDs)
- Each 20t of Gd-loaded liquid scintillator
  - Energy resolution 8% @1MeV



### **RENO**

Hanbit NPP, Korea **L** ≈ **300m**, **1380m** 




- Identical ND and FD
- 16t Gd-loaded liquid scintillator
- Energy resolution 8% @1MeV



### **Double Chooz**

Chooz-B NPP, France **L = 400m, 1050m** 



- Identical ND and FD
- Gd-loaded liquid scintillator (GdT, 10m<sup>3</sup>)
  - Energy resolution 7% @1MeV



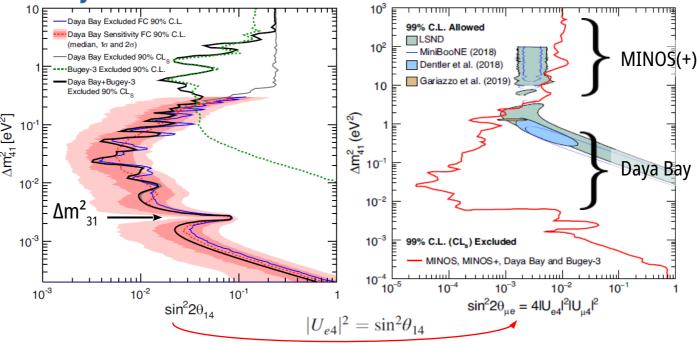
# Daya Bay results

# **Analysis method**

PRL 117 (2016) 151802

### Method A.

• Look at difference between FD ( $N^f$ ) and ND ( $N^n$ )


$$\chi^2 = \sum_{i,j} (N_j^f - w_j N_j^n) (V^{-1})_{ij} (N_i^f - w_i N_i^n) = \sum_{i,j} 10^{-1} \text{with } w_i (\Delta m_{41}^2, \sin^2 2\theta_{14}, \sin^2 2\theta_{13})$$

CL contour

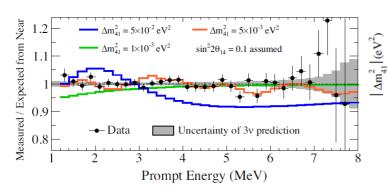
# Method B.

- Joint fit of ND and FD data starting from flux predictions (Huber-Mueller)
- Increased flux uncertainties
- CLs contour





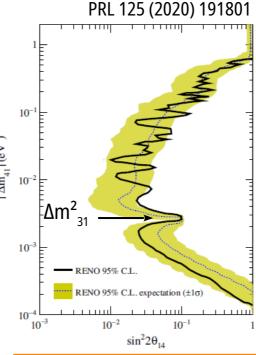
Only ≈1/3 of total data analyzed so far


- Highest sensitivity in  $\Delta m^2 \approx 10^{-2} 10^{-1} \, eV^2$
- Combination with MINOS(+) excudes part of LSND and global fits at >99 % CL

# **RENO** results

# **Analysis method**

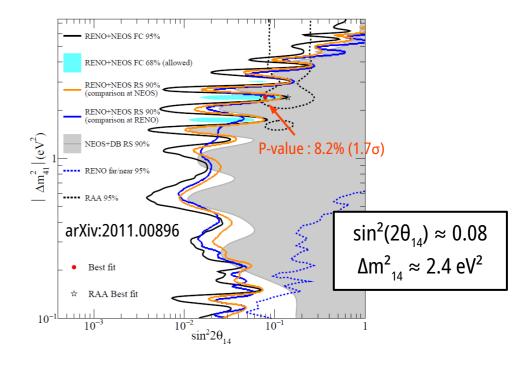
Use ratio FD/ND


$$\chi^2 = \sum_{i=1}^{N_{ ext{bins}}} rac{(O_i^{F/N} - T_i^{F/N})^2}{U_i^{F/N}} + ext{pull terms}$$



### **Future plans:**

- Only 2200/3400 days analyzed
- 3 more years of data taking!

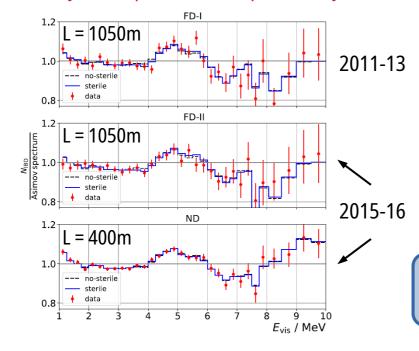

# **Analysis results**



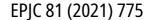
- Data agree with nooscillation hypothesis (p-value ≈ 87%)
- RENO-NEOS signal has low significance (1.7σ)

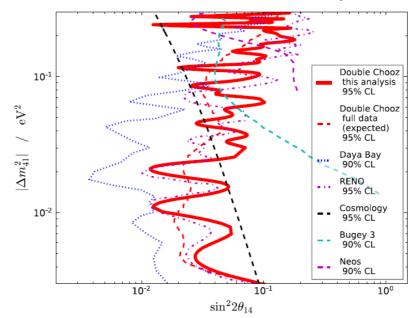
# **RENO-NEOS** analysis

- Use NEOS as prediction for RENO
- Use RENO-ND as prediction for NEOS
  - → model independant analyses







# **Double Chooz results**


# **Analysis method**

- Joint fit of ND/FD datasets
- Free norm parameter in each bin → only relative difference matters
- Analysis independent of shape anomaly



# **Analysis results**





Inclusion of 2017 data is coming

Data agree with no-oscillation hypothesis (p-value ≈ 25%)



# Short-baseline summary

- Short baseline reactor neutrino experiments have **extended their study** of  $\sin^2\theta_{13}$  in 3-flavor model to search for  $(\sin^2\theta_{14}, \Delta m^2_{14})$  in 3+1 model
- **Very large antineutrino samples** (> 10<sup>6</sup>), well-known detectors
- **Relative measurements** are performed using Near and Far Detectors, in order to be independent from flux predictions
- They provide **leading constraints** for  $\Delta m_{14}^2$  ranging **from \Delta m\_{31}^2 to 0.1 eV<sup>2</sup>**
- **RENO-NEOS** observation has **low significance** (1.7 $\sigma$ ), needs confirmation
- RENO still taking data, Daya Bay and Double Chooz in the process of analyzing their full dataset
  - → More to come soon!



# **Very-short-baseline experiments**



### **Research reactors (HEU)**

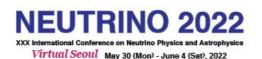
- lower power, lower stat
- compact core (Ø ≈ 0.5m)
- pure <sup>235</sup>U (irrelevant)

# **Very short baseline (VSBL)**

 $-L \sim O(10 \text{ m})$ 



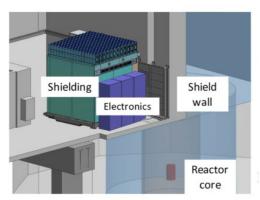
- access to large  $\Delta m^2$ 




- restricted space available, high background environnement

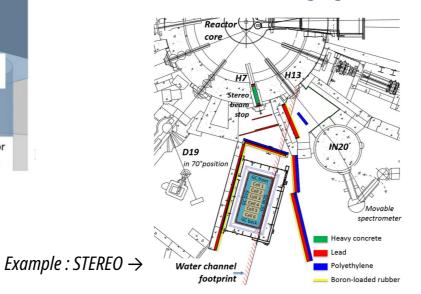
### **Commercial reactors (LEU)**



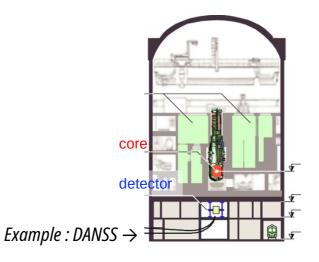

- high power, high stat
- extended core ( $\emptyset \approx \text{few m}$ )
- mixed isotopes (irrelevant)



# Challenges of VSBL experiments


# **L~10m** → vicinity of reactor core

- Design constraints
   Limited space, limited floor load in the reactor building
  - → Constraints : size of detector, amount of shielding




Example : PROSPECT ↑

- Large backgrounds
  - Cosmogenic: surface level → mild overburden (max ~10 m.w.e.)
  - Ambient fast neutron flux
  - Noise from surrounding experiments
- → Good S/B (~1) is challenging (HEU)!



- Resolution on L/E  $\Delta m^2 \sim E/L$ 
  - Extended cores (LEU): size ~3m
    - $\rightarrow \sigma_L/L$  up to 15%
  - Small cores (HEU): size ~0.5m
    - $\rightarrow \sigma_{l}/L$  down to 3%
    - → resolution on E is important!

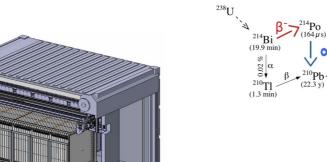


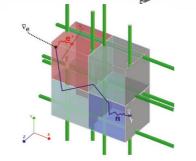


# The Solid experiment



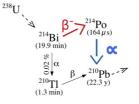
### **Reactor BR2** Mol, Belgium





40-80 MW HEU reactor Compact core Ø<50cm, h=90cm

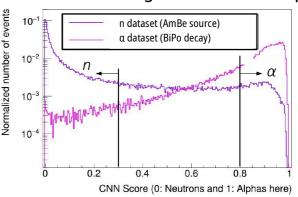
# **Segmented detector**

 $L \approx 6.3 - 8.9 \text{m}$ 


- 12.8k scintillator cubes (5cm)<sup>3</sup> with <sup>6</sup>LiF:ZnS foils → double scintillation
- Pulse shape discrimination on LiF:ZnS
  - 1.6t fiducial volume
  - 12% resolution @1MeV
- Selection based on event topology






### **Bi-Po background rejection**

Unexpectedly high contamination of <sup>6</sup>LiF:ZnS (2 orders of magnitude above IBD)



### → BiPonator

Machine Learning PSD method to separate  $\alpha/n$ 



94 % α rejection for 80 % neutron efficiency

 $\approx 90 \, \text{v}_{\text{a}}/\text{day with S/B} = 1/3$ 

0.200

0.150 0.125 0.100

0.075

0.050

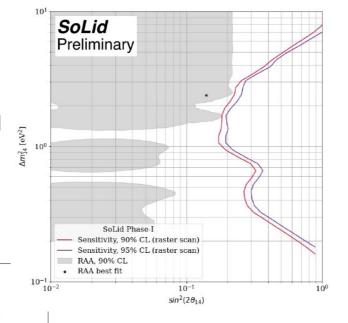
0.025

# Solid results



D.Gabinski's talk at Nufact21

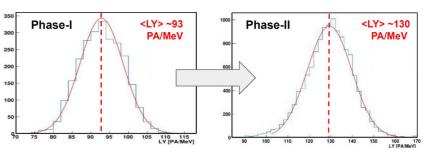
# **Analysis status**


LY + Energy Scale

- Currently working on phase-I data (2 yrs of data)
- Analysis will be stat. limited

SoLid

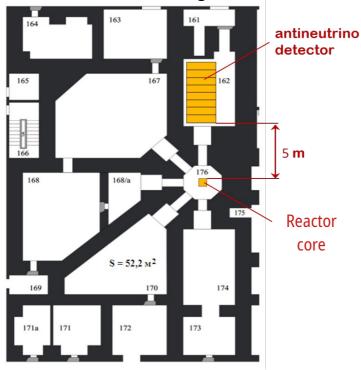
Prompt Energy [MeV]


Preliminary



First exclusion contour coming soon!

# **Solid Upgrade**


- Detector upgrade with improved MPPCs
  - 40 % more light yield
  - Better energy resolution
  - Improved reconstruction of annihilation gammas → event topology



 Phase-II detector taking data since late 2020

# The Neutrino-4 experiment

### Reactor SM-3 Dimitrovgrad, Russia



90 MW HEU reactor Compact core 42x42x35cm Highly enriched <sup>235</sup>U fuel

### Movable segmented detector

**L** ≈ **6.4** – **11.9m** with 23 cm steps (24 positions)

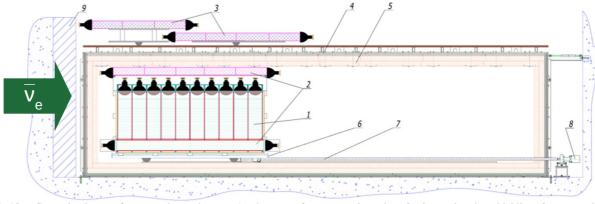
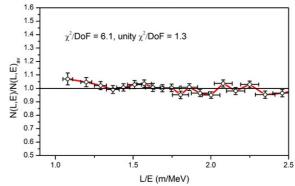
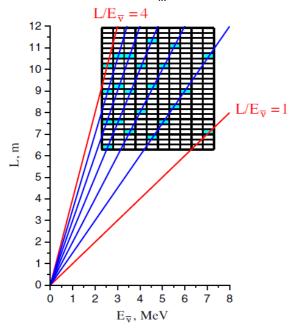



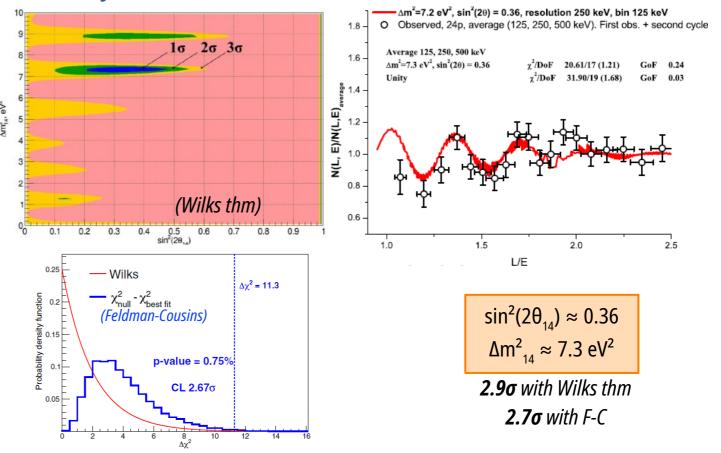

FIG. 18. General scheme of an experimental setup. 1—detector of reactor antineutrino, 2—internal active shielding, 3—external active shielding (umbrella), 4—steel and lead passive shielding, 5—borated polyethylene passive shielding, 6—moveable platform, 7—feed screw, 8—step motor, 9—shielding against fast neutrons made of iron shot.

- 1m³ liquid scintillator + Gd
- Assumed flat 250 keV resolution
- About  $300 \, \text{v} / \text{day} \, (\text{S/B} \approx 0.54)$
- Cosmic background dominates, but no strong L/E dependence →




# Neutrino-4 results

# **Analysis method**


 Relative measurement using ratio to baseline-averaged spectrum

$$R_{ik}^{\text{exp}} = (N_{ik} \pm \Delta N_{ik}) L_k^2 / K^{-1} \sum_{k}^{K} (N_{ik} \pm \Delta N_{ik}) L_k^2$$

• Summation of R<sub>ik</sub> in L/E space




# **Analysis results**





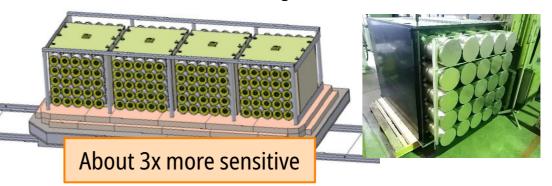
# Neutrino-4 future plans



detector

### **Current**

10x5 cells, single-PMT readout



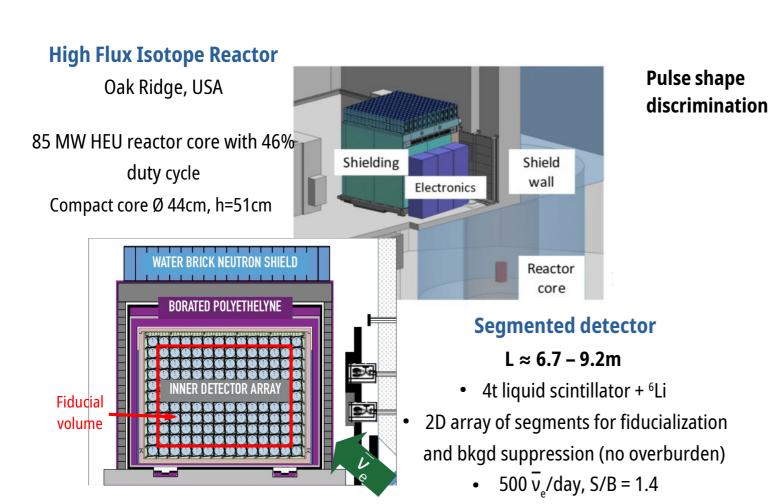


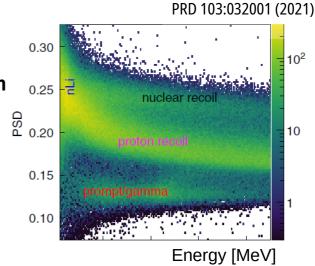


### **Upgrade**

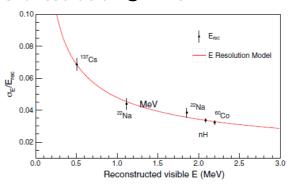
4 sub-detectors with 5x5 cells, double-PMT readout

- New scintillator → PSD capability, reduce correlated bkg
- More Gd → reduce accidental background





Installation 2022 Data taking 2023-24




# The PROSPECT experiment

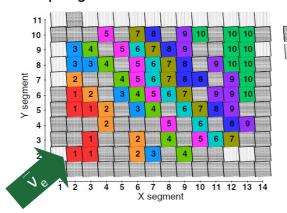






### 5% resolution @ 1 MeV

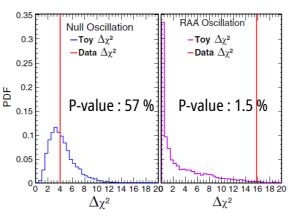





# **PROSPECT** results



# **Analysis method**


• Group segments with similar baseline

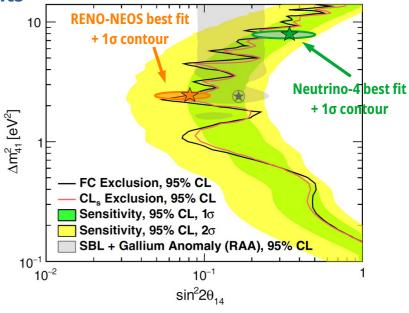


Take ratio to baseline-average



Segment with damaged PMT
Out of fiducial volume




### **Future plans:**

- 1. Use single-PMT segments in analysis (stat x2)
- 2. PROSPECT-II upgrade (2023)

arXiv: 2107.03934, 2202.12343

→ posters : P0355, P0357, P0558, P0106 ←

# **Analysis results**



• Rejection of the RAA+Gallium best fit

p-value = 1.5% ( $2.5\sigma$ )

- Neutrino-4 best fit + 1σ contour within sensitivity, excluded at >95 % CL
  - RENO-NEOS best fit at the edge of exclusion contour



# The STEREO experiment



JINST 13 (2019) 07, P07009 www.stereo-experiment.org

### **Segmented detector**

6 cells: **L** ≈ **9.4 – 11.2 m** with 37cm step

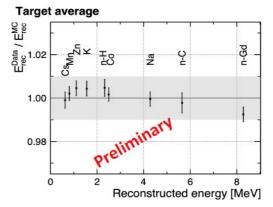
- 1.6t liq. scintillator + Gd
- Pulse shape discrimination
  - 9% resolution @ 1 MeV

• About 380  $\overline{v}$  /day, S/B  $\approx$  1.1

### **Réacteur Haut Flux (RHF)**

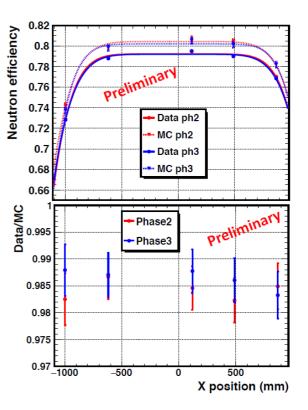
ILL, Grenoble, France

58 MW HEU reactor


Compact core Ø 40cm, h=80cm

Noise from nearby instruments




### **Finely tuned simulation**

For each phase of data taking



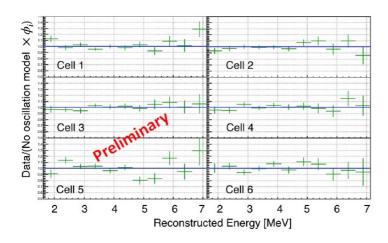
### **Neutron efficiency measurement**

Relative norm difference between cells?



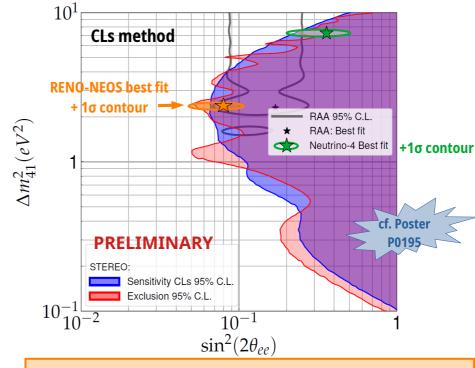


# STEREO results




# **Analysis method**

- Look for relative distortions between cells
- Free params  $\phi_i$  absorb model dependence


$$M_{l,i} = M_{l,i} \left(\sin^2 2 heta_{14}, \Delta m_{14}^2; ec{lpha}
ight)$$
  $\chi^2 = \sum_{l=1}^{N_{
m cells}} \sum_{i=1}^{N_{
m Ebins}} \left(rac{A_{l,i} - \phi_i M_{l,i}}{\sigma_{l,i}}
ight)^2$  + pull terms

*Ph-3 Data over no-oscillation adjusted model*  $\phi_i M_{l,i}$ 



No sign of significant oscillations

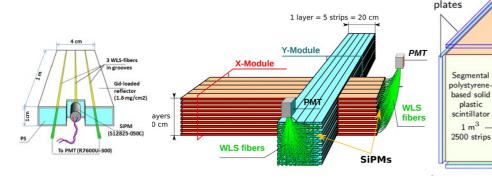
### Analysis results: final results w/ full dataset! (107k neutrinos)



- Strong rejection of the RAA allowed 95% CL space RAA best-fit point : p-value  $< 10^{-4} (>4\sigma)$
- Neutrino-4 best fit and  $1\sigma$  contour within sensitivity Best-fit **rejected at 3.1** $\sigma$  (p-value ~ 1.5 10<sup>-3</sup>)
  - NEOS-RENO best-fit point excluded at 2.8σ

<sup>★ 12</sup>B data

12B MC


 $^{12}$ B( $n^{12}$ C)

# The DANSS experiment

# Kalininskaya NPP Dimitrovgrad, Russia Changed 2x / week

· 3 GW reactor

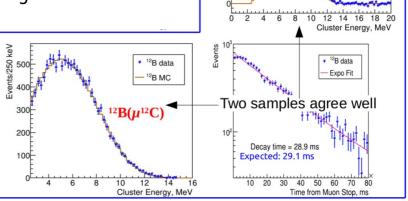
Extended core (Ø≈h≈3m)



### Movable detector

**L** ≈ **10** – **12m** (3 positions : top, middle, bottom)

- 1m³ plastic scintillator, Gd coating
- Resolution of 34%/√E


Cu+Pb+CHB passive shielding

Muon veto

•  $5000 \, \overline{v}_{\rm s}/{\rm day}$ , 1.7% background

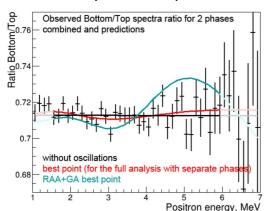
# Energy scale determined with $\beta$ -spectrum of $^{12}B$ $\downarrow$

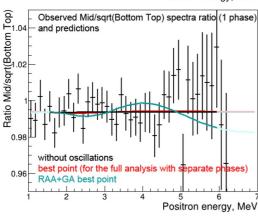
(2 % systematics)



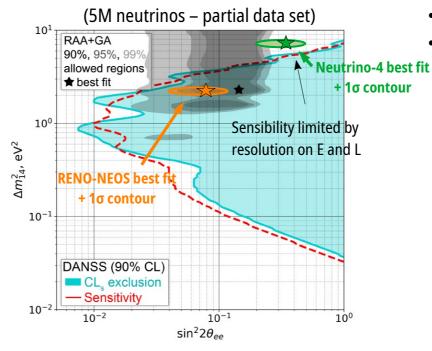
€ 5000F

% 4000F


ш 3000-


N. Skrobova, talk at Moriond-22

# **DANSS** results


# **Analysis method**

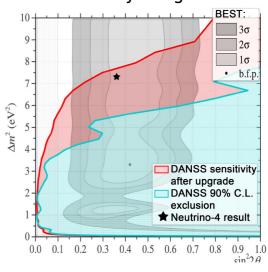
Ratio of spectra at ≠ positions





# **Analysis results**




 Rejection of the RAA + Gallium Anomaly

best fit point exluded at  $>5\sigma$ 

RENO-NEOS best fit excluded at >90%CL

# **Upgrade plan**

- Larger detector (x1.7 fiducial vol)
- Resolution 34%/√E → 13%/√E
  - $\rightarrow$  sensitivity to higher  $\Delta m^2$



≈1 yr for the upgrade ≈2 yr of data taking for 5-6M events

→ sensitivity to Neutrino-4 b.f. point



# Very-short-baseline summary

- The experimental challenge has been met by the community to investigate  $L \approx 10$ m oscillations!
- Segmented or movable detectors allows for relative measurements → results independent of flux models
- Reactor Antineutrino Anomaly parameter space **excluded at 95 % CL up to \Delta m^2 \approx 5 \text{ eV}^2**, and 5-10 eV<sup>2</sup> region within PROSPECT-II sensitivity
- Neutrino-4 signal at  $\Delta m^2 = 7.3 \text{ eV}^2$ ,  $\sin^2 2\theta = 0.36$  currently **excluded by PROSPECT (>95%CL)** and **STEREO** (>3 $\sigma$ ). Neutrino-4, PROSPECT and DANSS upgrades will provide further insight by  $\approx 2025$
- RENO-NEOS combined analysis in tension with other experiments, but statistical significance is low  $(1.7\sigma)$



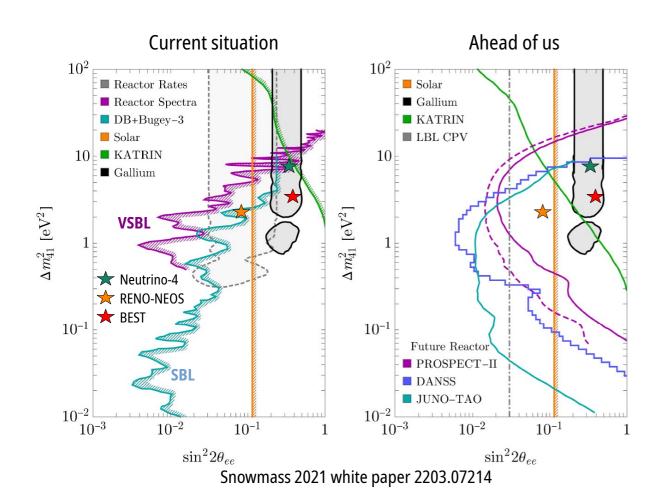
# Global picture and perspectives

**Asset Limitation Upgrade** 

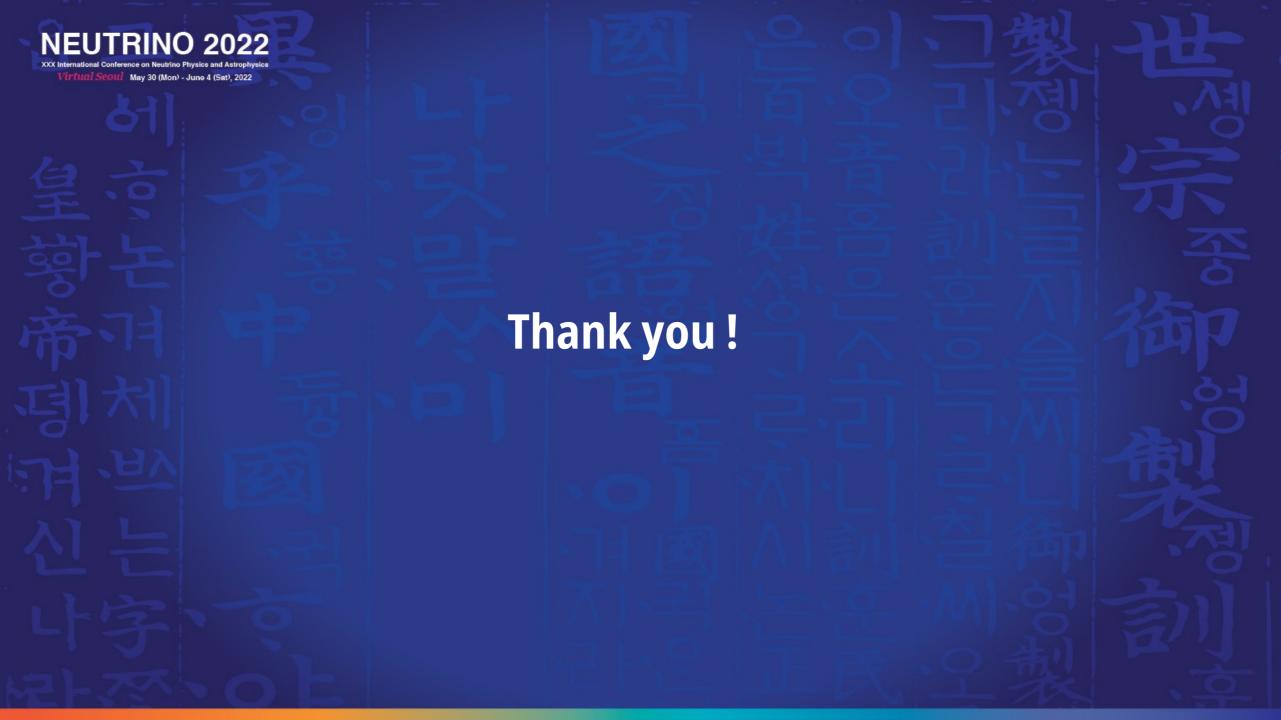
| Experiment                | Solid        | Neutrino-4                                                             | PROSPECT     | STEREO       | DANSS            | NEOS $\rightarrow$               | see talk by Jinyu Kim |
|---------------------------|--------------|------------------------------------------------------------------------|--------------|--------------|------------------|----------------------------------|-----------------------|
| Power [MW]                | 40-80        | 90                                                                     | 85           | 58           | 3000             | 2800                             | _                     |
| Core type                 | compact      | $\operatorname{compact}$                                               | compact      | compact      | large            | large                            |                       |
| Baseline [m]              | 6.3-8.9      | 6.4-11.9                                                               | 6.7 - 9.2    | 9.4-11.2     | 10-12            | 23.7                             |                       |
| Baseline comparison       | segmentation | segmentation, movable                                                  | segmentation | segmentation | movable          | none (RENO)                      |                       |
| Scintillator mass/volume  | 1.6t         | $1 \text{m}^3 \sim 3 \text{m}^3$                                       | 4t 4.8t      | 1.6t         | $1 \text{m}^3 1$ | $.7\mathrm{m}^3$ $1\mathrm{m}^3$ | _                     |
| $\sigma_E/E$ at 1 MeV [%] | 12           | 25                                                                     | 5            | 9            | 34               | 13 4.8                           |                       |
| Overburden [mwe]          | 8            | 3.5                                                                    | 0.5          | 15           | <b>50</b>        | 20                               |                       |
| S/B                       | 1/3          | $\boldsymbol{0.54} \hspace{0.1cm} \sim \hspace{-0.1cm} \boldsymbol{2}$ | 1.4 4.3      | 1.1          | 58               | > 20                             | _                     |
|                           | -            | 1.1                                                                    |              |              |                  |                                  | _                     |

Analysis, Upgrade Analysis, Analysis, data, upgrade upgrade

### What is coming?


- **Analysis** → on-going analysis of already taken data
- **Data** → More data taking
- Upgrade → A future upgrade is planned

| Experiment                | Daya Bay                | RENO            | Double Chooz             |
|---------------------------|-------------------------|-----------------|--------------------------|
| Power [MW]                | $6 \times 2900$         | $6 \times 2800$ | $2 \times 4250$          |
| Core type                 | large                   | large           | large                    |
| Baseline [m]              | 550, 1600               | 300, 1380       | 400, 1050                |
| Baseline comparison       | ND vs FD                | ND  vs  FD      | ND vs FD                 |
| Scintillator mass/volume  | $8 	imes 20 \mathbf{t}$ | $2 \times 16$ t | $2 \times 10 \text{m}^3$ |
| $\sigma_E/E$ at 1 MeV [%] | 8                       | 8               | 7                        |
| Overburden [mwe]          | 250, 860                | 120, 450        | 120, 300                 |
| S/B                       | 50                      | 40, 18          | 20, 11                   |
|                           | Analysis                | Data            | Analysis                 |


PROSPECT, DANSS, Neutrino-4 upgrades will adress their limitations



# Global picture and perspectives



- Complementary constraints from SBL and VSBL allow to probe a large range of  $\Delta m^2$
- KATRIN + Reactor constraints already cover most of Gallium Anomaly parameters
- Reactor Anomaly strength ( $\leftrightarrow \sin^2 \theta_{ee}$ ) still depends on flux modelling: not fully solved yet
- High-Δm² region of Reactor Anomaly will be covered by KATRIN
- Positive observations (BEST, Neutrino-4, RENO-NEOS)
   in (strong) tension with other experiments, to be confirmed in the next few years

