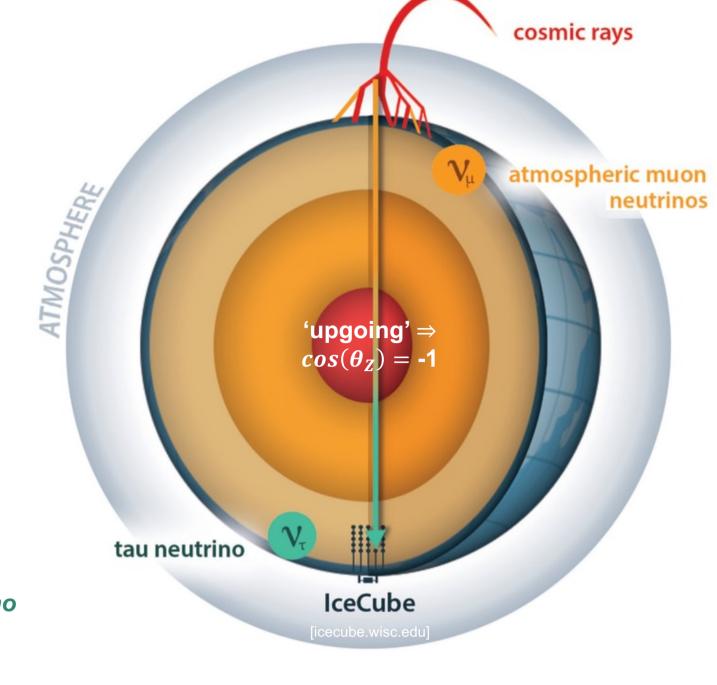


ICECUBE Upgrade: v-oscillations' high-statistics era

PHYSICS REACH

Atmospherics at IceCube

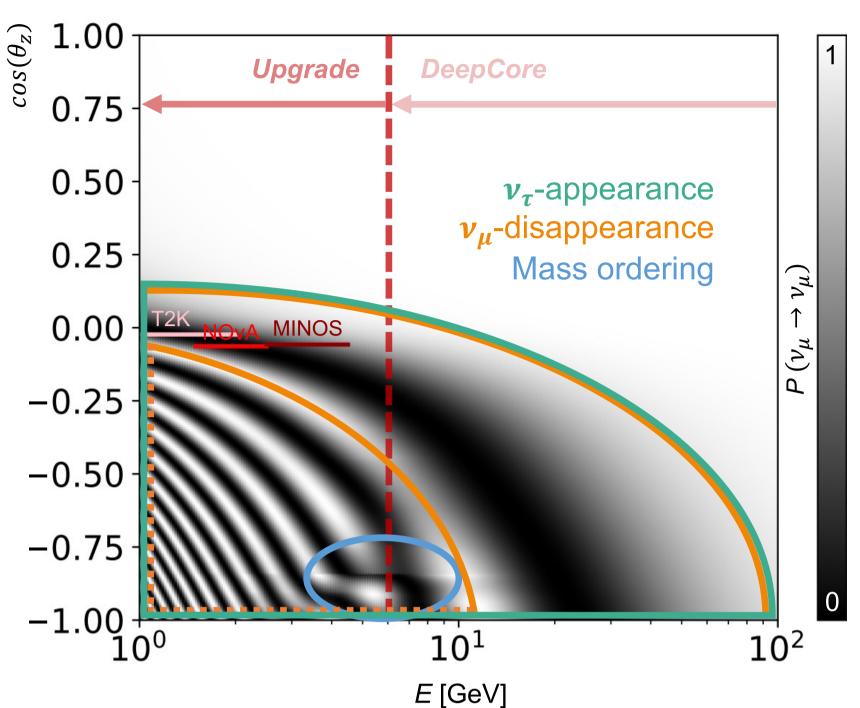
- 86% of v_{τ} global data is from IceCube v_{atm}
- Only multi-channel experiment sensitive to ν_{τ} -normalisation used to probe unitarity


Standard oscillations measurements

- v_{τ} -appearance: $N_{v_{\tau}} \neq 1 \Rightarrow$ non-unitary mixing \Rightarrow BSM, steriles, non-standard interactions
- ν_{μ} -disappearance: Constraints on atmospheric oscillation mass splitting & mixing angle

ICECUBE DETECTOR [arXiv:1908.09441] High-energy ν -telescope 5160 optical sensors over 1km³ Gton ice Cherenkov medium DeepCore Infill of low-E Mton array Sensitive to v_{atm} oscillations Earth-crossing $L \lesssim 13,000 \text{ km}$ IceCube Upgrade 7 columns of new sensors **Multi-directional PMTs** Upgrade 10x IceCube density Extending low-E coverage and event information DeepCore Performance gains with the Upgrade 3x number of hits per neutrino interaction * **2x energy resolution** \rightarrow 3x for τ -appearance energies * 3x zenith (θ_Z) resolution \rightarrow impacting $\sin^2(\theta_{23})$ constraint 2x detection efficiency → 10x efficiency below 10 GeV [arXiv:1204.4219] * **2x** ν_{τ} rate, **3x** ν_{μ} rate $\rightarrow \nu_{atm}$ every 15 mins Conservative estimates not based on recent advances in ML-based reconstruction & PID

OSCILLATIONS


Near maximal $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations for O(10 GeV) Earth-crossing ν_{atm}

IceCube's baselines access high-E oscillations with $Q^2 \gtrsim 2 m_ au$ for $u_ au$ CC

The Upgrade will access features of v_{atm} oscillations at high-(L/E) for the first time

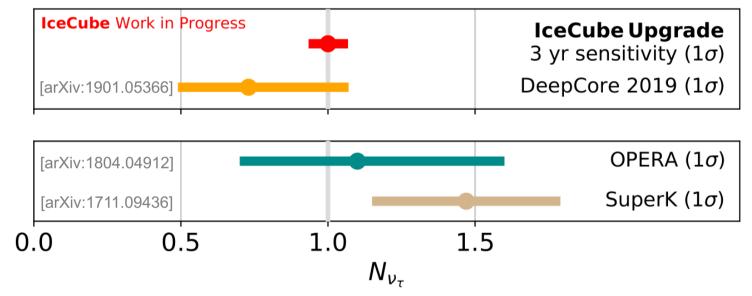
Constrains $\Delta m_{23}^2 \& sin^2(\theta_{23})$ with rich, higher-order oscillations space

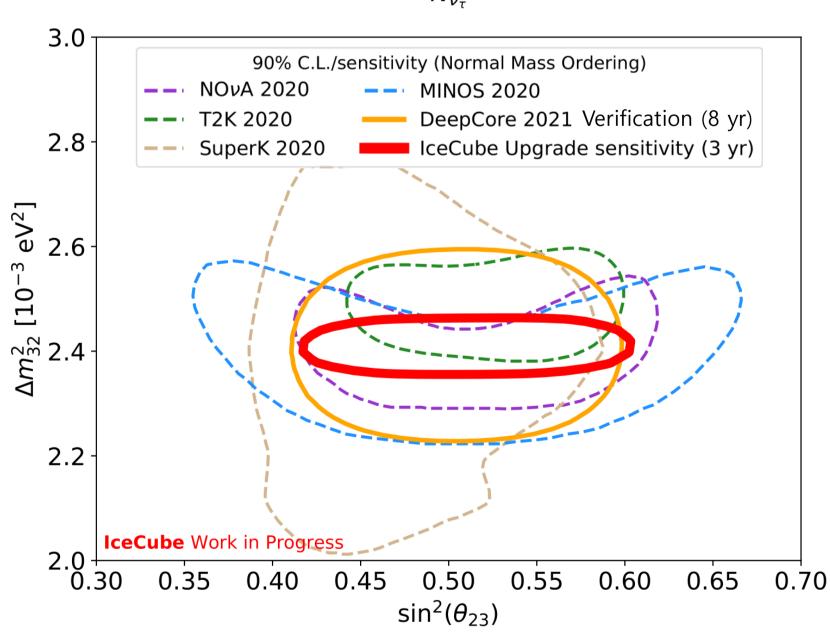
 $P(\nu_{\mu} \rightarrow \nu_{e})$ matter effects **sensitive to mass-ordering**, signal in ν or $\bar{\nu}$ < 10GeV

PROJECTIONS

Fits of standard oscillations to 3-year Upgrade-only expectation performed:

Sample, systematics & selection


- MCEq v_{atm} flux + GENIE sample
- Events limited to Upgrade volume
- No noise or μ_{atm} contamination
- DeepCore detector systematics
- Adapted DeepCore event selection


Parameterised reconstruction & PID

- Reconstruction tuned to v_e cascade with DeepCore v_μ/v_e relative $\sigma(\cos\theta_Z)$
- DeepCore PID up-scaled such that 50% of ν_{μ} CC at 10GeV are tagged as tracks

 v_{τ} -appearance $\rightarrow N_{v_{\tau}}$ 6% precision * >4-fold improvement on current world best

 u_{μ} -disappearance \rightarrow Limits on Δm^2_{32} & $sin^2(\theta_{23})$ competitive with long-baseline accelerator experiments *

CARLSBERG

FONDET

^[1] IceCube collab. 'Measurement of At...' (2017) [arXiv:1707.07081]

^[2] IceCube collab. 'Measurement of At...' (2019) [arXiv:1901.05366]

^[3] IceCube collab. 'An Absence of Neutri...' (2015) [arXiv:1204.4219]

^[4] IceCube collab. 'The IceCube Neutrino...' (2016) [arXiv:1612.05093]

^[5] A Ishihara. 'The IceCube Upgrade: Design...' (2019) [arXiv:1908.09441]

^[6] R. Abraham et al. 'Tau neutrinos in the Next...' (2022) [arXiv:2203.05591]

 ^[7] IceCube-Gen2 collab. 'Combined sens...' (2019) [arXiv:1911.06745]
[8] S. Ellis et al. 'Current and Future Neut...' (2020) [arXiv:2008.01088]