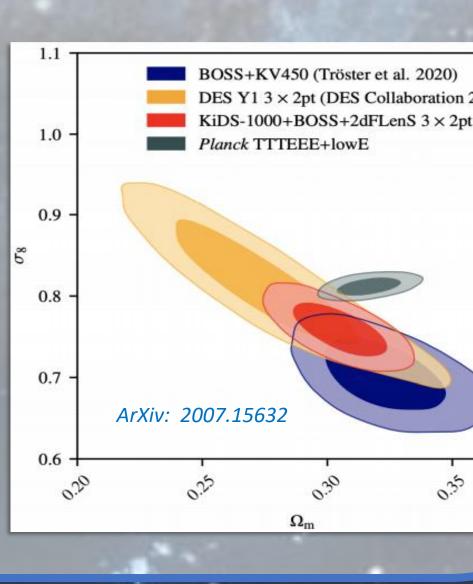
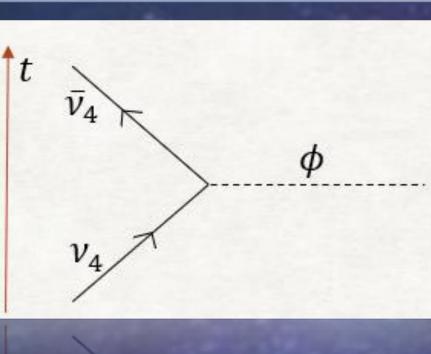


Cosmological Tensions


The Hubble Tension

• Hubble tension: $4 - 6 \sigma$ discrepancy between the lowredshift value of the Hubble parameter H_0 measured with local observations compared with that estimated from early-Universe data, assuming the $\Lambda CDM model [2, 3].$

The S_8 tension

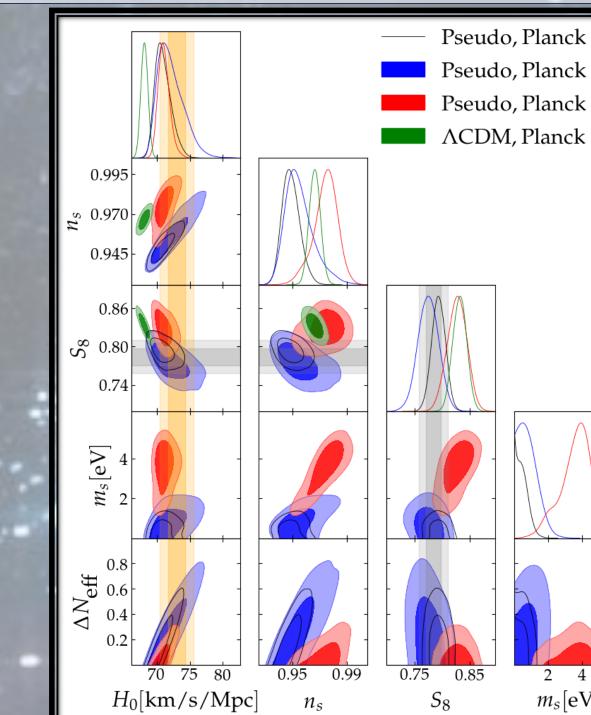

• S_8 tension: 2 – 4 σ discrepancy related to Large Scale Structure (LSS) observables, which systematically find a lower amplitude of the late-time gravitational clustering of matter, compared to that inferred from Planck Cosmic Microwave Background (CMB) within Λ CDM.

A sterile neutrino with a mass in the eV range might provide an explanation to long-standing anomalies in short-baseline (SBL) neutrino oscillation experiments!

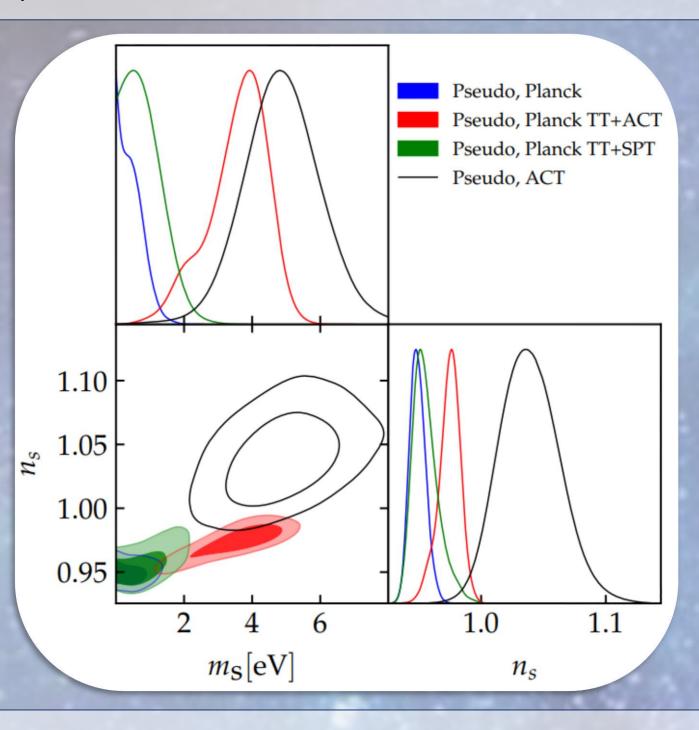
CMB and LSS data strongly constrain the simplest scenario where the new sterile neutrino component is a **non-interacting** and **free-streaming** species. In such a minimal scenario, it is very unlikely to find a common resolution to SBL anomalies and cosmological tensions.

The pseudoscalar model introduced in Ref. [4] can evade such limits by introducing a new interaction between the sterile neutrino and a **pseudoscalar field** ϕ described by the Lagrangian $\mathcal{L}=g_{s}\phi\bar{\nu}_{4}\gamma^{5}\nu_{4},$

where g_s is the coupling characterizing the interaction.

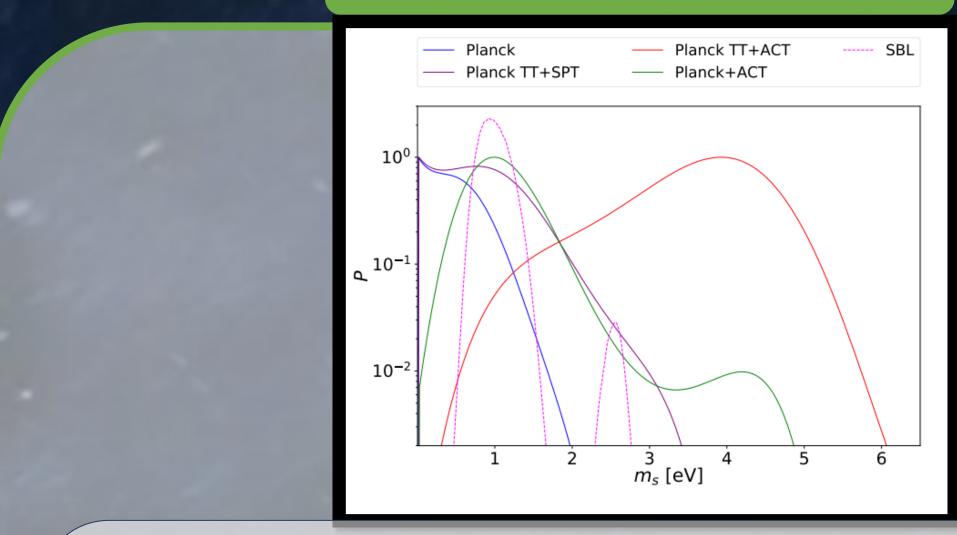

Pseudoscalar sterile neutrino self-interactions in light of Planck, SPT and ACT data

arXiv: 2104.03280 [Accepted by JCAP


Mattia Atzori Corona,^{*a,b*} Riccardo Murgia,^{*c*} Matteo Cadeddu,^{*b*} Maria Archidiacono,^{d,e} Stefano Gariazzo,^f Carlo Giunti,^f Steen Hannestad^g

Main Results and Discussion

> Our baseline Λ CDM is described by { $\omega_b, \omega_{cdm}, \theta_s, n_s, A_s, \tau_{reio}$ }. > The pseudoscalar scenario is fully characterized by two additional parameters, namely the sterile neutrino mass, m_s , and its contribution to the effective number of relativistic degrees of freedom, ΔN_{eff} .


- \checkmark The model is able to simultaneously alleviate the H_0 and S_8 tension. × High- ℓ Planck and SPT polarization data strongly constrain m_s due to its correlation with
- ×The pseudoscalar model does not provide a good fit compared Λ CDM in the *Planck* and in the joint *Planck* TT+SPT analysis ($\Delta \chi^2 \sim 13$ and $\Delta \chi^2 \sim 8$ respectively).
- ? When trading *Planck* TE-EE data for those from ACT, we find a $> 3\sigma$ preference for a non-zero sterile neutrino mass of $m_s = 3.6^{+1.1}_{-0.6}$ eV (68% C.L.)!!
- In the joint Planck TT+ACT analysis the global fit is only mildly degraded compared to ACDM ($\Delta \chi^2 \simeq +3$), due to the fact that the pseudoscalar model provides a better fit of ACT data than the Λ CDM model ($\Delta \chi^2 \simeq -6$), balancing the worse fit to high- ℓ Planck TT data ($\Delta \chi^2 \simeq +9$).

• The preference for a non-zero value of m_s is mostly driven by ACT favouring a higher value for the primordial spectral index n_s with respect to *Planck* and SPT!

Pseudo, Planck TT+SPT Pseudo, Planck TT+ACT

> Orange band: Direct measurement of H_0 from Snla (*Riess, 2021* [5]) • Gray band: Direct measurement of S_8 from Weak lensing surveys (DES-Y3 [6])

performed, and the secondary peak around $m_s \simeq 2.5$ eV.

Conclusions and Perspectives

values for H_0 with respect to Λ CDM.

 $\Lambda CDM (\Delta \chi^2 \simeq -6).$

early times.

References:

[1] M. Atzori Corona et al., e-print 2104.03280 (2021)

- (Accepted by *JCAP*)

Other contacts:

R. Murgia: <u>riccardo.murgia@gssi.it</u> M. Cadeddu: <u>matteo.cadeddu@ca.infn.it</u> M. Archidiacono: <u>maria.archidiacono@unimi.it</u>

Mattia Atzori Corona

mattia.atzori.corona@ca.infn.it

Comparison with SBL

- \succ In the figure above we compare the posterior distributions of m_s in the pseudoscalar model obtained from the cosmological analyses
- \succ The SBL posterior shows a main peak around $m_s \simeq 1$ eV and a
- > There is a clear compatibility between the cosmological indications and SBL within the pseudoscalar framework.
- We confirm the capability of the model under study to provide higher
- \checkmark We show that the pseudoscalar model **does not worsen the** S_8 **tension**, being indeed able to solve it for some data combinations.
- The pseudoscalar model provides a **better fit to ACT data** compared to
 - ACT data predicts larger value of n_s with respect to *Planck* and SPT both in the Λ CDM and in the pseudoscalar model.
- Due to the positive $n_s m_s$ correlation, ACT predicts non-zero values of m_s even in a combined analysis with *Planck*.
- We show that discrepancy between *Planck* and ACT prediction comes from intermediate multipoles ($350 < \ell < 1000$) and that it can lead to highly non-trivial results in the pseudoscalar framework! See also similar analyses performed in Refs. [7,8] in models featuring early dark energy at

[2] Lloyd Knox and Marius Millea, Phys. Rev. D 101.4 (2020) [3] Licia Verde et al., *Nature Astronomy* 3.10 (Sept. 2019) [4] Maria Archidiacono et al., *Phys. Rev. D* 91 065021 (2015) [5] A.G. Riess et al., *Astrophys.J.* 908 L6 (2021) [6] DES collaboration, e-print 2110.10141 (2021) [7] ACT collaboration, e-Print: 2109.04451 (2021) [8] Poulin et al., *Phys. Rev. D* 104 12, 123550 (2021)

- C. Giunti: <u>carlo.giunti@to.infn.it</u>
- S. Gariazzo: gariazzo@to.infn.it
- S. Hannestad: <u>steen@phys.au.dk</u>