

NEUTRINO SMALL VOLUME EXPERIMENT II Kang Young Lee GNU

THANKS TO THE HELP OF M. PAC (JSNS2), J. YOO (COHERENT), AND C. S. YOON (SND@LHC)

@2021 KPS-DPF MEETING 2021.12.18

SND@LHC

Scattering and Neutrino Detector operating at the LHC

New experiment to study high energy neutrinos and feebly interacting particles produced at the LHC

SND@LHC Technical Proposal https://cds.cern.ch/record/2750060/files/LHCC-P-016.pdf

Forward Experiment of LHC

FASER

 $\eta > 9$

Physics Goals

- **High energy neutrinos** $pp \rightarrow \nu X$ at the LHC studied for the first time
- Expected neutrino energy **350 GeV TeV**
- Measuring all of **three flavour** neutrinos
- Pseudorapidity region 7.2 < η < 8.6 (Note that FASERv η > 9)
- First phase : operation in Run3 to collect **150fb**⁻¹

- The first study of the high energy neutrinos in 350 GeV-10 TeV range.
- LHC is the unique place to study the high energy.

Energy and Pseudorapidity distribution of LHC neutrinos

arXiv: 2108.05370 [hep-ph]

LHC

FAR FORWARD LHC EXPERIMENTS

The existing caverns UJ12 and UJ18 and adjacent tunnels are good locations for experiments along the LOS: 480 m from ATLAS and shielded from the ATLAS IP by ~100 m of rock.

ATLAS

SND: approved March 2021

UJ18

FASER: approved March 2019 Lo FASERv: approved December 2019

SPS

UJ12

SND@LHC detector

Scattering and Neutrino Detecto at the LHC

walls

Hybrid detector optimized for the identification of 3 neutrino flavours.

Emulsion Cloud Chambers (ECC) : Emulsion + Tungsten Scintillating fibers for timing information and energy measurement

The Detector Layout

- Angular acceptance $7.2 < \eta < 8.6$
- Target : Tungsten 830 kg
- Surface : 390x390 mm²

ECC target (& detector)

- Number of ECC Brick walls: 5
- 1 Brick wall \rightarrow 4 ECC Bricks
- * 1 ECC Brick \rightarrow Sandwich structure of Emulsion films

& Tungsten plates

60 Emulsion films (0.3 mm-thick each)

59 Tungsten plates (1 mm-thick each)

150 fb⁻¹ in 3 years → ECC Brick will be replaced about 6 times (every 25 fb⁻¹)

- Total 120 Bricks : 4 Bricks x 5 walls x 6 times
- Number of films: 7200
- Total surface: 274 m²
- Total mass: 830 kg

4 ECC Bricks in a Brick wall

Signals reconstructed in the ECC Brick

Neutrino scattering

LDM & FIP scattering

Neutrino expectation

150 fb⁻¹ in LHC run 3

We can expect about **2,000** high energy neutrino interactions in the ECC target. **v production** with DPMJET3, **propagation** with FLUKA, **interaction** with GENIE:

Flavour	Neutrinos ir $\langle E \rangle$ (GeV)	n acceptance Vield
1 lavoui		11010
$ u_{\mu}$	145	2.1×10^{12}
$\bar{ u}_{\mu}$	145	$1.8 imes 10^{12}$
ν_e	395	$2.6 imes 10^{11}$
$\bar{\nu}_e$	405	$2.8 imes 10^{11}$
$ u_{ au}$	415	$1.5 imes 10^{10}$
$\bar{ u}_{ au}$	380	$1.7 imes 10^{10}$
TOT		4.5×10^{12}

Number of v's in SND@LHC acceptance

	CC neutrino interactions		NC neutrino interaction	
Flavour	$\langle E \rangle (GeV)$	Yield	$\langle E \rangle (GeV)$	Yield
$ u_{\mu}$	450	730	480	220
$\bar{\nu}_{\mu}$	485	290	480	110 ³
ν_e	760	235	720	70
$\bar{\nu}_e$	680	120	720	44
$ u_{ au}$	740	14	740	4
$\bar{ u}_{ au}$	740	6	740	2
TOT		1395		450

v's interacting in SND@LHC ECC target

Neutrino and anti-neutrino flux as a function of neutrino energy and pseudo-rapidity.

Muon-electron-tau neutrinos from top to bottom.

Physics Cases

- Measurement of the **cross section** (pp $\rightarrow \nu$ X) in 7.2 < η < 8.6 range
- v as a probe of heavy flavour production
- Lepton flavor universality test in neutrino interactions: v_{τ}/v_{e} and v_{μ}/v_{e}
- Measurement of the **NC/CC** ratio
- Direct search for **feebly interacting particles** through their scattering

Expectations

- Measurement of the $pp \rightarrow vX$ cross section. (~5% ~15%)
- Heavy flavour production from v in pp collision (~5% ~35%)
- Lepton flavour universality in neutrino interaction

$$R_{13} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\tau + \overline{\nu}_\tau}} = \frac{\sum_i \tilde{f}_{c_i} \tilde{Br}(c_i \to \nu_e)}{\tilde{f}_{D_s} \tilde{Br}(D_s \to \nu_\tau)}, \quad (\sim 30\% \ \sim 20\%)$$

$$R_{12} = \frac{N_{\nu_e + \overline{\nu}_e}}{N_{\nu_\mu + \overline{\nu}_\mu}} = \frac{1}{1 + \omega_{\pi/k}}.$$
 (~10% ~10%)

• Measurement of the CC/NC ratio. (~5% ~10%)

$$P = \frac{\sum_i \sigma_{NC}^{\nu_i} + \sigma_{NC}^{\bar{\nu}_i}}{\sum_i \sigma_{CC}^{\nu_i} + \sigma_{CC}^{\bar{\nu}_i}}$$

Installation Status

SND@LHC TI18 tunnel (480 m left from ATLAS IP)

2021. 11

FASER TI12 tunnel (480 m right from ATLAS IP)

2021. 12

US1 DS3 DS4 DS2 US2 US3 US4 US5 DS1 (H) (H) (H) (H) (H) (H+V)(H+V)(H+V)(V) **DOWNSTREAM STATIONS UPSTREAM STATIONS**

SciFi

Front view

Trolley carrying ECC Brick

ECC Brick installation

2021.12

SND-LHC is currently a collaboration with 180 members from 24 institutes in 13 countries and CERN..

Korean group have joined the collaboration with 8 members from 4 institutes below:

K-SND group

Gyeongsang National University

S. H. Kim, K. Y. Lee, B. D. Park, J. Y. Sohn, C. S. Yoon

Korea University

K. S. Lee

Gwangju National University of Education Y. G. Kim

Sungkyunkwan University K.-Y. Choi

Our Contributions

- Emulsion data analysis
- Emulsion facility construction
- Chemicals for development & Gel production
- FIP search etc.

CERN-MoU-2021-034	-Î
Understanding	Scattering and Neutring at the LHC
nd Neutrino Detector at LHC Experiment)	
RESEARCH, "CERN", neva, Switzerland,	
on the one hand,	
SND@LHC Collaboration	
SND@LHC Collaboration	CERN-MoU-2021-034
This MoU is produced in 12 original docu and by a Collaborating Institution.	ments, each pair signed by CERN as Host Laboratory
Signed in Geneva, Switzerland	signed in Jimju , Korrea
on 19 August 2021	on 02 September 2021
Joe de - Men A	Tor Gyeongsang National University (GNU)
	CERN-MoU-2021-034

MoU 2021.9

8 July 2021

SND@LHC MoU

Page 7 of 24

Timeline of the construction, installation and operation of the SND target

YETS 21-22 Master schedule

M. Bernardini

2022 April: LHC turned on.

JSNS²

J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source

JSNS2 Experiment

- sensitive to the higher region of Δm_{14}^2 favored by the global fits
- 3 GeV pulsed proton beam from RCS, and a spallation neutron target at J-PARC MLF
- Neutrinos come predominantly from µ⁺ decay :

• Oscillations $(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ are detected via inverse beta decay (IBD).

Physics Goals

- Search for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ oscillation as a direct and an ultimate test for LSND
- Measurement of Neutrino–Induced Nuclear Reaction Cross Sections
 - ⇒ Cross section measurements with neutrinos having a few 10 MeV from muon decay at rest and monochromatic 236MeV from kaon decay at rest
 - \Rightarrow important for
 - Super Nova explosion
 - core-cooling by neutrino emission
 - neutrino heating on shock wave
 - nucleosynthesis
 - Nuclear reaction cross section

Detection Principle

- Target : 17 tons of Gd loaded Liquid Scintillator (GdLS)
 ✓ 192 PMTs (TDR)
- Detection method : inverse beta decay

$$\overline{v_{\mu}} \Rightarrow \overline{v_{e}} + p \rightarrow e^{+} + n$$

- Identify neutrino signal with detecting positron and gammas from neutron capture on Gd
- ✓ can reduce accidental background
 - \Rightarrow 8 MeV gammas from Gd, capture time \sim 30 μ s
- Selection criteria for IBD

	Time from beam	Energy
Prompt signal	1 <t<sub>p<10µs</t<sub>	20 <e<60mev< td=""></e<60mev<>
Delayed signal	T _p <t<sub>d<100μs</t<sub>	7 <e<12mev< td=""></e<12mev<>

Collaboration

JSNS2 : J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source (E56)

- 6 Japanese Institutions (27 members)
- 10 Korean Institutions (27 members)
- 1 UK Institution (1 member)
- 4 US Institutions (7 members)

Spokesperson : T. Maruyama (KEK) co-spokesperson : S. B. Kim (SKKU)

Common fund : 5.4M JPY/year -> from NRF's "해외대형연구시설활용" -> thanks to NNF

Korea (9) **Chonnam National University Dongshin University** Kyung Hee University Seoyoung University SungKyunKwan University Seoul national University of Science and Technology..

Status

- Detector construction : 2017–2020
- First long-term physics run (Jan-Jun 2021)
- Beam power: 0.6 MW (Jan. 15-Apr. 5), 0.7 MW (Apr. 5-Jun. 22)
- Total accumulated POT 1.45×10^{22} (~13% of TDR)

Korean Group Activities

- Korean Collaborators have published six out of seven papers during 2019 -2021 (as a Corresponding author).
- Korean Co-spokesperson : Prof. Soo-Bomg Kim
- Leading role in Physics/DAQ/BKG studies
- Serving as major committee members

Present and Future

• The contribution of the Korean group in JSNS2 has been significant, and we expect that the activities will continue in the future.

COHERENT

The COHERENT Collaboration

Multiple Physics Cases: Non-standard neutrino interactions, Weak mixing angle, Accelerator-produced dark matter, Sterile oscillations, Neutrino magnetic moment, Nuclear form factors, Inelastic CC/NC cross sections for SN, Inelastic CC/NC cross sections for weak physics

~80 members, ~19 institutions, 4 countries

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Neutral Current

$$\mathcal{L}_{eff} = \frac{G_F}{\sqrt{2}} l^\mu j_\mu$$

Cross section for zero-momentum transfer limit

 $\sigma_{\nu N} \simeq \frac{4}{\pi} E_{\nu}^{2} \left[Z \omega_{p} + (A - Z) \omega_{n} \right]^{2}$ $g(Z_{0}u) = \frac{1}{4} - \frac{2}{3} \sin^{2} \theta_{W}, \quad g(Z_{0}d) = -\frac{1}{4} + \frac{1}{3} \sin^{2} \theta_{W}$ $\omega_{p} = \frac{G_{F}}{4} (4 \sin^{2} \theta_{W} - 1), \quad \omega_{n} = \frac{G_{F}}{4}$ $\sin^{2} \theta_{W} = 0.231 \Rightarrow \text{ proton coupling is not significant}$

Differential cross section for finite momentum transfer

$$\frac{d\sigma}{dE} = \frac{G_F^2}{4\pi} \left[(1 - 4\sin^2\theta_w) Z - (A - Z) \right]^2 M \left(1 - \frac{ME}{2E_\nu^2} \right) F(Q^2)^2$$

Spallation Neutron Source: Oak Ridge National Laboratory

Proton LINAC

Accumulator Ring

- Proton beam energy: 0.9-1.3 GeV
- Total power: 0.9-1.4 MW
- Pulse duration: 380 ns
- Repetition rate: 60 Hz
- Liquid mercury target

- Bunch time profile : ~800 ns width
 - Neutrinos are from the pion decay at rest
 - v Flux ~ 107/sec/cm² at 20m from the target
- Steady state background rejection factor ~10-4
- Underground low neutron background area

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

Target

Neutrino Alley at SNS

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

CEvNS Measurement 2017 and 2021

2017 Csl measurement

- Science 357, 6356 (2017)
- 173 signal events $\rightarrow 6.7\sigma$

2021 Csl results (new)

- 333 signal events \rightarrow 12.5 σ

$$\sigma_{\nu-\text{Csl}} = (1.7 \pm 0.3) \times 10^{-38} \text{ cm}^2$$

2021 Ar measurement

- PRL 126 012002 (2021)
- CEvNS measurement by 3.5σ
- $-\sigma v$ -Ar = (2.2 ± 0.7) × 10⁻³⁹ cm²
- Best Non-Standard Interaction constraint
- Factor 2 more data (analyzing)

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

Future of COHERENT

- COHERENT has a robust suite of future experiments, including Ge, NaI, MARS, NIN, and a ton-scale LAr detector
- New ton-scale LAr detector (Jonghee Yoo, SNU) Expect ~10,000 CEvNS/3year
 - Precision measurement of CEvNS
 - Beam-induced dark matter search
 - Non-standard interactions
 - Neutron radius measurement
 - → Full of new physics cases

0.5

Nn, ee €

CHARM

Combined

-0.5

_d,v

0.5

Csl Ge Ar

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

Future Neutrinos at SNS

FTS	2021	2022	2024	2028 STS Neutrino Hall
1.4 M	W	1.7 MW	2.0 MW	FTS: 2.0 MW @ 45 Hz

Calorimetry

COHERENT "First Light" Program

- CEvNS with HPGe, Nal
- Heavy Water Flux Normalization of FTS

Ton-Scale Argon Calorimetry

- CEvNS studies
- Dark Matter searches
- quark-lepton couplings for v mass ordering
- Low Threshold Detector R&D
- Supernovae neutrino cross sections

Directionality

Heavy Water Ring Imaging Design

- Improved Flux Normalization
- ve-oxygen Interactions for Hyper-K

Argon Detector R&D for STS

- Scalable Low threshold Light Collection
- R&D for Position/Direction Reconstruction
- Direction reconstruction for CC-leptons
- Study for coherent inelastic interactions

Discovery Scale

STS: 0.7 MW @ 15 Hz

Neutrino Program at 2nd Target Station

10-ton Liquid Argon

- Beam induced dark Matter searches
- Precision CEvNS studies
- Precision Ar cross sections measurement
- Weak Mixing Angle
- Neutrino EM properties

Heavy Water Ring Imaging

- Flux Normalization of STS
- Precision ve-oxygen for Hyper-K

2000+ users Hierarchical materials, timeresolution and small samples 0.7 MW 15 Hz 2.8 MW 1.3 GeV 38 mA 60 Hz FTS 2 MW 45 pulses/sec

Korea Physical Society Division of Particle Physics Meeting 2021-12-10 (Yoo)

감사합니다.

Backup Slides

Detector design is constrained from the tunnel and the uphill floor.

PSEUDO-RAPIDITY RANGE

TECHNICAL PROPOSAL н Å Collision axis y^{Dx} L Distances wrt P3 (FASER+2) Dx = 80 mmDy = 155 mmDz = 1017 mm $\eta = [7.20, 8.62]$ Target dimensions L = 390 mmDistance of P3 wrt IP1 Dz0 = 482000 mm

н Å Collision axis y^{Dx} г Distances wrt P1(FASER CENTRE) Dx = 75.4 mmDy = 191.6 mm + 7.0 mmDz = 2889 mm $\eta = [7.17, 8.42]$ Target dimensions L = 385 mmDistance of P3 wrt IP1 Dz0 = 480000 mm

TI18 INSTALLATION

Neutrinos from b, c and W

 $v_{\tau} \sim 5\%$ for 6.5< η <9

Mostly for $\eta < 5$

- W decays could be tagged at IP detectors \rightarrow See future plans under Outlook
- Tagging the ν flavour \rightarrow study lepton flavour violation although with low statistics

CERN is unique in providing energetic v (from LHC) and measure pp $\rightarrow vX$ in an unexplored domain

P. Santos Diaz, 7th SND@LHC Collaboration meeting ,13.12.2021