

2021. 12. 18.

2021 Meeting of the Division of Particles and Fields of the Korean Physical Society

Yemilab project for new discoveries.

Muon flux

How to test if neutrinos are Majorana particles ?

 1939, Furry already suggested to search 0vββ to check Majorana's theory. Furry PR56, 1184(1939)

for light neutrino exchange model.

Effective $0\nu\beta\beta$ neutrino mass is ;

Current Mass Limits

- Neutrino mass is ultra small, and we don't understand its origin. It is related to if neutrinos are Majorana particles.
- Neutrino mass is constrained by beta decays and cosmology.

<u> $0\nu\beta\beta$ vs $2\nu\beta\beta$ T(1/2) - updated</u>

• A correlation between $2\nu\beta\beta$ half-life(measured) vs $0\nu\beta\beta$ half-life (calculated)

 $G_{0\nu} \propto Q^5$, $G_{2\nu} \propto Q^{11}$. H. Ejiri's comment

Now, how sensitive are the $0\nu\beta\beta$ experiments ?

- $0\nu\beta\beta$ needs a good energy resolution and extremely low backgrounds.
- Discovery sensitivities depend on background and exposure •

Discovery sensitivity : The half-life for which an experiment has a 50% chance to

Exposure (kg year)

Implementation in tens of experiments

-			-	
Legenda	Large source mass	NvDEx ZICOS	High pressure TPC Dilution in liquid scintillator+Cherenkov	⁸² Se ⁹⁶ Zr
	Easily scalable	SNO+ SNO+-Phase II	Dilution in liquid scintillator Dilution in liquid scintillator	¹³⁰ Te ¹³⁰ Te
(color code)		Theia	Dilution in liquid scintillator+Cherenkov	¹³⁰ Te- ¹³⁶ Xe
		KamLAND-Zen 400	Dilution in liquid scintillator	136Xe
		KamLAND2-Zen 800	Dilution in liquid scintillator	136Xe
	Fluid	EXO-200	Liquid TPC	136Xe
	a walk a shela al	nEXO	Liquid TPC	¹³⁶ Xe
Completed	embedded	NEXT-White	High pressure TPC	136Xe
Data taking		NEXT-HD / NEXT-BOLD	High pressure TPC	136Xe
Data taking	source	PANDAX-III	High pressure TPC	136Xe
Construction /		AXEL	High pressure TPC	¹³⁶ Xe
Commissioning		DARWIN	Double-phase TPC	136Xe
s to a sometimes a	at	R2D2	High pressure TPC I Katsioulas this conference	136Xe
Advanced R&D CDR/TDR level	el	LiquidO	Dilution in opaque liquid scintillator	multi
R&D		CANDLES-III	Scintillators	48Ca
		CANDLES-IV	Scintillating bolometers J. Minami, this conference	48Ca
	High energy resolution	MAJORANA DEM.	Semiconductor detectors	⁷⁶ Ge
SuprNEMO Tracking ⁸² Se	High energy resolution	GERDA	Semiconductor detectors	76Ge
emonstrator + Calorimeter	/ efficiency	LEGEND-1000	Semiconductor detectors	76Ge
0		CDEX-300 / CDEX-1000	Semiconductor detectors Qian Yue, this conference	76Ge
	Crustel	SELENA	Semiconductor detectors	⁸² Se
-	Crystal	CUPID-0	Scintillating bolometers	⁸² Se
e.	omboddod	CUPID-Mo	Scintillating bolometers	100Mo
Source≉ Detector	penpedded	AMORE-II	Scintillating bolometers	100Mo
	6011800	CUPID	Scintillating bolometers	100Mo
TGV-2 EC/EC 8+/EC 106Cd	source	CUPID Reach / CUPID-1T	Scintillating bolometers	100Mo
		COBRA	Semiconductor detectors	116Cd
N. Rukhadze, this conference		LIN-LIN CLIORE	Bolometers	130To
		CROSS	Scintillating bolometers	¹⁰⁰ Mo- ¹³⁰ Te
		BINGO	Scintillating / Cherenkoy bolometers	100Mo-130Te

A. Giulliani @ TAUP2021

Recent Limits & Persepectives

Plan of AMoRE Project

Phases	AMoRE-Pilot	AMoRE-I	AMoRE-II
Detector Setup (Not in scale)			
Crystals	⁴⁰ Ca ¹⁰⁰ MoO ₄ (CMO)	(⁴⁰ Ca,Li ₂) ¹⁰⁰ MoO ₄	Li ₂ ¹⁰⁰ MoO ₄ (LMO)
Crystal # & Mass	6, 1.9kg	18, 6.2kg	596, 178kg
Backgrounds (ckky)	~10-1	<10-2	<10-4
$T_{1/2}(year)$	$\sim 3.0 \mathrm{x} 10^{23}$	$\sim 7.0 \mathrm{x} 10^{24}$	$\sim 8.0 \times 10^{26}$
$m_{\beta\beta}$ (meV)	1200-2100	140-270	13-25
Location/Schedule	Y2L / 2015-2018	Y2L / 2020-2022	Yemilab / 2022-2027

AMoRE-pilot - finished

- AMoRE-Pilot experiment began in 2015 @ Y2L to demonstrate the concept.
- 6 CMO crystals are used.
 - ~ 2 years of data with different configurations to reduce the backgrounds.
- Final $0\nu\beta\beta$ halflife limit is 3.43×10^{23} year.

AMoRE-I - running

14

- AMoRE-I run began Aug. 2020 @ Y2L
 - Check detector performance (LMO)
 - Understand background better.
- 17 crystals (34 MMC-SQUID sensors) are stable for over 1 year w/o any noticeable change !

Will get the backgrounds and limits before Neutrino 2022.

AMoRE-II – under construction

• Improvement in detector performance is continuing.

(1) Polishing vs lapping(roughening)

16

Polished surface Lapped surface

Lapping effects :

- Better energy resolution ~ 8 keV FWHM.
- Larger light output \rightarrow DP factor > 10.
- Signal slower, rising time 3.2 ms → 4.8 ms. → Disadvantage of larger pileup effect, but still within AMoRE-II requirement.

(2) Thermal link to heat bath

Tested larger (D=H=6cm) crystal to reduce channel numbers for AMoRE-II • and further experiments.

Now, AMoRE's energy resolution is close to CUPID-Mo in the test setup, which has been a task for a long time !

Heat Detector

17

(3) Na₂Mo₂O₇ crystal

- Tested a large (D=H=4cm) Na₂Mo₂O₇ crystal to check it is suitable for AMoRE-II experiment.
- Slower rising time (~5.6ms @ 10mK), but good energy resolution and excellent PID.
- A candidate, but it is found difficult to grow large crystal.

Construction is going on..

19

AMoRE-II refrigerator, detector tower

20

Large dilution Refrigerator from Leiden.

- Three PTR (PT420 RM)
- 2.4 mW @ 120 mK,
- $\circ > 5 \,\mu W @ 10 \, mK$
- Delivered to IBS in Aug. 2020.
 - With heavy LN2 supply, it takes 6 days to reach 4 K.
- Mass inside IVC: 900 kg (Cu) now, $\sim 4 \text{ t}$ (Cu+Pb) to be added
- \sim 3 hours to condense the mix.
- \sim 4 hours to reach 10 mK

Mass at MC: 300 kg (Cu) now, $\sim 4 t$ (Cu+Pb) to be added.

New detector module and towers

• The module designs are done for 5-cm and 6-cm LMOs

5cm module 6cm module

First, 90 crystals will be cooled.

Are there sterile neutrinos ?

- Three "Active" neutrinos are left-handed.
- Sterile neutrinos are right-handed neutrinos, so sterile.
 → 4th Flavor
- They can be Majorana particles.

22

- Being sterile, they can, in principle, have an arbitrarily mass.
- Sterile neutrinos can oscillate with active neutrinos.
- Heavy sterile neutrinos are dark matter candidates.

Microboone

- Search for Neutrino-Induced Neutral Current Radiative Decay in MicroBooNE and a First Test of the MiniBooNE Low Energy Excess Under a Single-Photon Hypothesis, arXiv:2110.00409
- Search for an anomalous excess of inclusive charged-current nu_e interactions in the MicroBooNE experiment using Wire-Cell reconstruction, arXiv:2110.13978
- Search for an Excess of Electron Neutrino Interactions in MicroBooNE Using Multiple Final State Topologies, arXiv:2110.14054
- Search for an anomalous excess of charged-current e interactions without pions in the final state with the MicroBoNE experiment, **arXiv:2110.14065**
- Search for an anomalous excess of charged-current quasi-elastic e interactions with the MicroBooNE experiment using Deep-Learning-based reconstruction., arXiv:2110.14080

MicroBooNE rejects the hypothesis that nu_e CC interactions are fully responsible for that excess at >97% CL for both exclusive (1e1p CCQE, 1eNp0pi) and inclusive (1eX) event classes.

→ MINIBOONE's excess is not observed. Microboone is consistent with background model.

23

2-zone Ga experiment BEST

-Independent measurements in each zone with 2 baselines
 -Increased target mass (48 tons instead of 13 tons)
 -More active source (3.4 MCiinstead of 0.5 MCi)
 -All procedures were well studied in sun runs

Ga anomaly confirmed and intensified

Reactor neutrino spectra revisited.

2<u>5</u>

NEOS projects

- NEOS-II covered whole burn-up cycle (1.5 years data) compared to NEOS (0.5 year data).
- PI : Yoomin Oh & Sunny Seo (CUP, IBS)

RENO opened unfolded spectra. Atif et al., arXiv:2011.00896

NEOS compared with RENO.

NEOS-II data taking finished

To confirm

- the wiggling pattern seen in NEOS-I
- the fuel burn-up.
- Improve sterile neutrino search.

- LAB LS with 0.5% Gd loaded and 10% of DIN (UG-F) mixed; same recipe for NEOS-I & II.
- Precipitates in the LS samples \rightarrow LY decreases, attenuation got worse.
- Can be controlled for analysis (YJKo @ v-2020).
- Efficiency should be studied carefully.

28

NEOS-II Simulation

- MC tuning is almost done. •
- Validating MC by comparing beta spectra w/ data •
- Beta spectrum for ¹²B will be compared. •

IBD reconstruction

- Single event selection
- Energy cut, Exception electric noise, flasher cut

- IBD candidate
- Energy cut, muon veto, multiplicity cut, PSD parameter cut

IBD Prompt Energy Spectrum & Rate

Spectrum decomposition

- 32
 - 9 periods for reactor on time based on data run numbers.
 - Generating pseudo data by using Huber-M ueller model.
 - Standard deviation : 4% & 20% for ²³⁵U & ²³⁹Pu in 4 - 6 MeV.

235**[**]

LSC @ Yemilab

 $1200(1800,2400) \ge 20$ inch PMTs = 20% (30, 40)% coverage

Broad Physics Program

Neutrino production @ IsoDAR

IsoDAR@Yemilab mid-baseline

IsoDAR@Yemilab depth

17 m

(2700 m.w.e.

985 m

 ~ 1000 events/day

Expected results.

arXiv:2111.09480 : "Neutrino Physics Opportunities with the IsoDAR Source at Yemilab"

- $\overline{\nu_e}p \rightarrow e^+n$
- Well known energy spectra and cross section unlikely with other experiments; reactor neutrinos, ~GeV neutrino-nuclear cross section, neutrino-nucleus CC interaction etc.

arXiv:2111.09480 : "Neutrino Physics Opportunities with the IsoDAR Source at Yemilab"

IsoDAR@Yemilab elastic scattering

Searching for new physics with $\overline{\nu}_e e \rightarrow \overline{\nu}_e e$

Sunny Seo, IBS

Solar Neutrinos

- Borexino data: 2007(2008) 2016 @LNGS
- 300 ton LS (~2200 8" PMTs, ~6% @1MeV)
- Very low radioactive BKG

Summary

- $0\nu\beta\beta$ is one of the best probe for BSM physics.
- AMoRE experiment aims to be sensitive close to 10²⁷ year range for ¹⁰⁰Mo isotope and will be installed by end of 2023 in full scale.
- AMoRE group established a unique detection system among competent leading double beta decay experiments.
- $0\nu\beta\beta$ can be discovered at anytime with new sensitivities.
- O(eV) Sterile neutrino searches are continuing with contradictory results. NEOS-II data for sterile neutrino and fuel decomposition is coming soon.
- LSC cavern will be ready soon and a white paper on LSC physics including IsoDAR@Yemilab is coming along.

Schedule for AMoRE-II

- The backgrounds will be estimated more clearly when we have first data of AMoRE-II with 90 crystals in 2022.
- Modular expansion is possible, increasing # of detectors.

40

- After AMoRE-II, ton scale experiment can be considered. ~ CUPID 1ton.
- CUPID & AMoRE discuss to collaborate for future combination.

								_													-											-																
				2	202	1								20)22											20	23							20	24													
ltem	Description	Q2		Q3			Q4			Q1	1		21		Q2		Q3		}	Q4		1		Q1		C		Q2		Q2		Q2		Q2		Q3		Q3		Q3		Q3		C	14		Q1	2024 1 Q2 2 3 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7
		6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9 1	0 1	11 12	1	2	3	4	5	6											
	LSC excavationn		_																																													
Shieldin	Clean room					_		►																																								
Silleluin	Install Shielding				-			►																																								
	Install muon vetos			-					→																																							
	Manufacture	+																																														
DP	Test @ HQ			_					_	•																																						
DK	Install @ Yemi												->	-																																		
	Install SSS & inner pb												-	→																																		
	Crystal Production										•	-																		+	\rightarrow																	
	MMC & SQUID sensors								-	>>		-									E																											
	Module assembly												->	-																																		
Detector	Tower Assembly												-																																			
Detector	Install Towers & Super. Shiled	ł												-																																		
	Closing & Run																																															
	Update to Full scale																													+																		
	Run Full AMoRE-II																															-		-			\rightarrow											
							_		_	-																				T																		