Belle II

천병구 (한양대)
On behalf of the Belle II Collaboration

Korean-DPF Workshop, DEC/17-18/2021

FERMIONS | matter constituents |
| :--- |
| spin $=1 / 2,3 / 2,5 / 2, \ldots$ |

Properties of the Interactions				
The strength of the interacions (forces) are showr realive to the strength of the electromagneicic force for two u quaiks separated by the specified distances				
Property	Gravitational Interaction	Weak Interaction (El	Electromagnetic Interaction veak)	Strong Interaction
Acts on:	Mass - Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Parricles mediaing:	Graviton (not yet obsenved)	$W^{+} W^{-} Z^{0}$	γ	Gluons
Strength at $\left\{\begin{array}{l}10^{-18} \mathrm{~m} \\ 3 \times 10^{-17} \mathrm{~m}\end{array}\right.$	$\begin{aligned} & 10^{-41} \\ & 10^{-41} \end{aligned}$	$\begin{gathered} 0.8 \\ 10^{-4} \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 25 \\ & 60 \end{aligned}$

Why SuperKEKB/Belle II?

- Search for the New Physics beyond the SM
- Direct new particle production : ATLAS/CMS @LHC
- So far, no evidence of the New Physics from LHC
- Indirect new particle contribution : Belle II @SuperKEKB

LHC 실험과 Belle \|। 실험의 상보성

Belle II @ SuperKEKB

Belle II @ Super-KEKB

Intensity frontier B-factory experiment, Successor to Belle @KEKB (1999-2010)

Belle II @ SuperKEKB

- Successor to Belle @ KEKB ($\sim 1 \mathrm{ab}^{-1}$)
- No enough Belle data for the New Physics beyond the SM
- Plan to collect $50 \mathrm{ab}^{-1}$ of collisions mostly at $\mathrm{Y}(4 \mathrm{~S})$
- SuperKEKB peak luminosity design goal is $8 \times 10^{34} / \mathrm{cm}^{2} / \mathrm{sec}$

	$\mathrm{E}(\mathrm{GeV})$ $\mathrm{e}+/ \mathrm{e}-$	$\beta^{*} \mathrm{y}$ $\mathrm{e}+/ \mathrm{e}-$	$I(\mathrm{~A})$ $\mathrm{e}+/ \mathrm{e}-$	Peak \mathcal{L} $\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$
KEKB	$3.5 / 8.0$	$5.9 / 5.9$	$1.6 / 1.2$	2.1×10^{34}
SuperKEKB	$4.0 / 7.0$	$0.27 / 0.30$	$3.6 / 2.6$	80×10^{34}

- Beam current: $\times 2$ (High RF power)
- Beam size: x 1/20 (Nano-beam; low emittance, compact and strong focusing quads; QCS)
(Q) Eecer Nano-Beam Scheme

The Belle II detector

Trigger \& DAQ readout:

- Max. 30kHz Hardware trigger rate
- High Level Trigger $1 / 3$ rate reduction

Offline computing:

- Distributed over the world via GRID

- Pipeline readout
- Better beam background insensitivity
- Improved vertexing \& tracking
- Improved Particle-ID (K/ $/ / \mathrm{p}$)

Belle II operation status

- Collected $213.6 \mathrm{fb}^{-1}$ by 2021ab run
- World highest peak luminosity: $3.12 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-}$
- Resumed Belle II operation (2021c run)
- LS1 planned for PXD/TOP system upgrade after collecting Belle II data comparable to Belle
- Data taking continued even in the covid-19 situation with caution.

KEK campus

~40 Belle Il colleagues on-site

Belle II Physics

Belle II Physics Program

The Belle II Physics Book, PTEP 2019, 123C01 (2019)

Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$\left\|V_{u s}\right\| \quad[K \rightarrow \pi \ell \nu]$	input	$0.5 \% \rightarrow 0.1 \%_{\text {Latt }}$	0.2246 ± 0.0012	0.1\%	K factory
$\begin{array}{ll} \hline\left\|V_{c b}\right\| & {\left[B \rightarrow X_{c} \ell \nu\right]} \\ \left\|V_{u b}\right\| & {[B \rightarrow \pi \ell \nu]} \\ \gamma & {[B \rightarrow D K]} \\ \hline \end{array}$	input input input	$\begin{aligned} & 1 \% \\ & 10 \% \rightarrow 5 \%_{\text {Latt }} \\ &<1^{\circ} \end{aligned}$	$\begin{gathered} (41.54 \pm 0.73) \times 10^{-3} \\ (3.38 \pm 0.36) \times 10^{-3} \\ \left(70_{-30}^{+27}\right)^{\circ} \end{gathered}$	$\begin{gathered} \hline 1 \% \\ 4 \% \\ 3^{\circ} \end{gathered}$	$\begin{aligned} & \text { Super- } B \\ & \text { Super- } B \\ & \text { LHCb } \end{aligned}$
$S_{B_{d} \rightarrow \psi K}$	$\sin (2 \beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
$S_{B_{s} \rightarrow \psi \phi}$	0.036	$\lesssim 0.01$	$0.81{ }_{-0.32}^{+0.12}$	0.01	LHCb
$S_{B_{d} \rightarrow \phi K}$	$\sin (2 \beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_{s} \rightarrow \phi \phi}$	0.036	$\lesssim 0.05$	-	0.05	LHCb
$S_{B_{d} \rightarrow K^{*} \gamma}$	few $\times 0.01$	0.01	-0.16 ± 0.22	0.03	Super-B
$S_{B_{z} \rightarrow \phi \gamma}$	few $\times 0.01$	0.01	-	0.05	LHCb
$A_{\text {SL }}^{d}$	-5×10^{-4}	10^{-4}	$-(5.8 \pm 3.4) \times 10^{-3}$	10^{-3}	LHCb
$A_{\text {SL }}^{s}$	2×10^{-5}	$<10^{-5}$	$(1.6 \pm 8.5) \times 10^{-3}$	10^{-3}	LHCb
$A_{C P}(b \rightarrow s \gamma)$	<0.01	<0.01	-0.012 ± 0.028	0.005	Super- B
$\mathcal{B}(B \rightarrow \tau \nu)$	1×10^{-4}	$20 \% \rightarrow 5 \%_{\text {Latt }}$	$(1.73 \pm 0.35) \times 10^{-4}$	5\%	Super- B
$\mathcal{B}(B \rightarrow \mu \nu)$	4×10^{-7}	$20 \% \rightarrow 5 \%_{\text {Latt }}$	$<1.3 \times 10^{-6}$	6\%	Super-B
$\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$	3×10^{-9}	$20 \% \rightarrow 5 \%_{\text {Latt }}$	$<5 \times 10^{-8}$	10\%	LHCb
$\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)$	1×10^{-10}	$20 \% \rightarrow 5 \%_{\text {Latt }}$	$<1.5 \times 10^{-8}$	[?]	LHCb
$A_{\mathrm{FB}}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)_{q_{0}^{2}}$	0	0.05	(0.2 $\pm 0.2)$	0.05	LHCb
$B \rightarrow K \nu \bar{\nu}$	4×10^{-6}	20\% $\rightarrow 10 \%_{\text {Latt }}$	$<1.4 \times 10^{-5}$	20\%	Super-B
$\|q / p\|_{D-\text { mixing }}$	1	$<10^{-3}$	(0.86-0.15 ${ }^{+0.18}$)	0.03	Super-B
ϕ_{D}	0	$<10^{-3}$	$\left(9.6{ }_{-9.5}^{+8.3}\right)^{\circ}$	2°	Super- B
$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)$	8.5×10^{-11}	8\%	$\left(1.73_{-1.05}^{+1.15}\right) \times 10^{-10}$	10\%	K factory
$\mathcal{B}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right)$	2.6×10^{-11}	10\%	$<2.6 \times 10^{-8}$	[?]	K factory
$R^{(e / \mu)}(K \rightarrow \pi \ell \nu)$	2.477×10^{-5}	0.04\%	$(2.498 \pm 0.014) \times 10^{-5}$	0.1\%	K factory
$\mathcal{B}(t \rightarrow c Z, \gamma)$	$\mathcal{O}\left(10^{-13}\right)$	$\mathcal{O}\left(10^{-13}\right)$	$<0.6 \times 10^{-2}$	$\mathcal{O}\left(10^{-5}\right)$	LHC ($100 \mathrm{fb}^{-1}$)

Complementary to each other

Property	LHCb		Belle II
$\sigma_{b \bar{b}}(\mathrm{nb})$	$\sim 150,000$	\ddots	
$\int L d t\left(\mathrm{fb}^{-1}\right)$	~ 25	\ddots	\sim
Background level	High	\ddots	Low
Typical efficiency	Low	\ddots	High
π^{0}, K_{S} efficiency	Low	\ddots	High
Initial state	Not well known	\ddots	Well known
Decay-time resolution	Excellent	\ddots	
Collision spot size	Large	\ddots	Good
Heavy bottom hadrons	B_{s}, B_{c}, b-baryons \because		Partly B_{s}
τ physics capability	Limited	\ddots	Excellent
B-flavor tagging efficiency	$3.5-6 \%$	\ddots	36%

adapted from

1. Flavor Physics Constraints for Physics Beyond the Standard Model

Gino Isidori (Frascati \& TUM-IAS, Munich), Yosef Nir, Gilad Perez (Weizmann Inst.). Feb 2010. 33 pp. Published in Ann.Rev.Nucl.Part.Sci. 60 (2010) 355

Belle II Physics Results

Belle II Physics Results

- Many data analyses of various physics sectors have been performed.
- 20 conference papers are available.
- 4 physics journal papers published.

Precise measurement of the D^{0} and D^{+}lifetimes at Belle II	Phys. Rev. Lett. 127, 211801 (2021) DOI: 10.1103/PhysRevLett.127.211801
Search for $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ decays using an inclusive tagging method at Belle II	Phys. Rev. Lett. 127, 181802 (2021) DOI: 10.1103/PhysRevLett.127.181802
Search for Axionlike Particles Produced in $e^{+} e^{-}$Collisions at Belle II	Phys. Rev. Lett. 125, 161806 (2020) DOI: 10.1103/PhysRevLett.125.161806
Search for an Invisibly Decaying Z^{\prime} Boson at Belle II in $e^{+} e^{-} \rightarrow \mu^{+} \boldsymbol{\mu}^{-}\left(\boldsymbol{e}^{ \pm} \boldsymbol{\mu}^{\mp}\right)$ Plus Missing Energy Final States	Phys. Rev. Lett. 124, 141801 (2020) DOI: 10.1103/PhysRevLett.124.141801

- Lifetime measurements test effective QCD models and provide guidance to describe strong interactions
- High precision measurement
- Excellent vertex detector alignment
- Precise calibration of final state particle momenta

- Data sample
- $72 \mathrm{fb}^{-1}$ Belle II dataset
- High-purity golden decay modes
- Reconstruct $D^{\star+} \rightarrow D^{0}\left(\rightarrow K^{-} \pi^{+}\right) \pi_{s}{ }^{+}$ $D^{*+} \rightarrow D^{+}\left(\rightarrow K^{-} \pi^{+} \pi^{+}\right) \pi_{s}^{0}$ from mostly $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow c \bar{c}$

- Unbinned ML fit to ($\mathrm{t}, \sigma_{\mathrm{t}}$)
- Resolution ~60-70 fs

TABLE I. Systematic uncertainties.

Source	$\tau\left(D^{0}\right)[\mathrm{fs}]$	$\tau\left(D^{+}\right)[\mathrm{fs}]$
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

$D^{0} I D^{+}$lifetime measurements @ Belle II

Phys. Rev. Lett. 127, 211801 (2021)

$$
\begin{aligned}
& \tau\left(D^{0}\right)=410 \pm 1.1(\text { stat }) \pm 0.8(\text { syst }) \mathrm{fs} \\
& \tau\left(D^{+}\right)=1030.4 \pm 4.7(\text { stat }) \pm 3.1(\text { syst }) \mathrm{fs} \\
& \frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}=2.510 \pm 0.013(\text { stat }) \pm 0.007(\text { syst })
\end{aligned}
$$

- Most precise to date
- Consistent with other experiments
- Demonstrated excellent vertexing capabilities
- Confirmed understanding of systematic effect
- Impact future decay-time-dependent analyses

B signal reconstruction @ Belle II : Tagged Analysis

1. Tagged Analysis

One B meson from $\Upsilon(4 S)$ decay is exclusively reconstructed to tag $B \bar{B}$ events.

2. Untagged Analysis
 (Inclusive Tagged Analysis)

Reconstruct only signal B decay and

Full Event Interpretation (FEI): Comp. and Soft. For Big Sci. 3. 6 (2019) Multivariate algorithm for exclusive tagging of one B meson in a $\Upsilon(4 S)$ decay using hierarchal approach.

Over $100 B$ meson decay channels and over 10,000 decay cascades

Improved effiiciency up to 50\% relatively with respect to conventional approaches!
arXiv:2008.06096

B signal reconstruction @ Belle II : Untagged Analysis

1. Tagged Analysis

One B meson from $\Upsilon(4 S)$ decay
is exclusively reconstructed
to tag $B \bar{B}$ events.

highest p_{T} track

$$
B \rightarrow K^{*} v \bar{v} / K_{S}^{0} v \bar{v}, B^{+} \rightarrow \tau^{+} v
$$

$B^{+} \rightarrow K^{+} v \bar{v}$ decay @ Belle II

- Complementary probe of BSM physics scenarios with $b \rightarrow$ sll transitions.
- Not observed yet..
- SM prediction:
$\mathcal{B}(B \rightarrow K \nu \bar{\nu})_{S M}=(4.6 \pm 0.5) \times 10^{-6}$
T. Blake et al., Prog. Part. Nucl. Phys. 92 (2017) 50
- Previous Belle analyses
- Advantage for $\mathrm{e}^{+} \mathrm{e}^{-}$collisions : E_{cm} is fixed Signature : missing energy (peaking at zero)
- B meson tagging (Full Recon. on opposite side) Hadronic tagging $\varepsilon_{\text {sig }} \times \varepsilon_{\text {tag }} \sim 0.04 \%$ Semileptonic tagging $\varepsilon_{\text {sig }} \times \varepsilon_{\text {tag }} \sim 0.20 \%$
- New approach at Belle II :
- "Inclusive tagging" for the first time!
- Belle II data (only), 63 fb-1

Experiment	Year	Observed limit on BR $\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)$	Approach	Data [fb $\left.{ }^{-1}\right]$
BABAR	2013	$<1.6 \times 10^{-5}$ [Phys.Rev.D87,112005]	SL + Had tagging	429
Belle	2013	$<5.5 \times 10^{-5}$ [Phys.Rev.D87,111103(R)]	Had tagging	711
Belle	2017	$<1.9 \times 10^{-5}$ [Phys.Rev.D96,091101(R)]	SL tagging	711

$B^{+} \rightarrow K^{+} v \bar{v}$ decay @ Belle II

- Signal reconstructed as the highest p_{T} track
- Inclusive reconstruction of the rest-of-event (ROE)
- Inclusive tagging: Train two Boosted Decision Trees (BDTs) in cascade to suppress backgrounds using 51 input parameters such as event shape and ROE..
-- BDT_{1} : Discriminate signals mainly by topological features
-- BDT_{2} : Improve purity of signals in events with $\mathrm{BDT}_{1}>0.9$

$$
\mathcal{B}(B \rightarrow K \nu \bar{\nu}) \leq 4.1 \times 10^{-5}(90 \% C L)
$$

Phys. Rev. Lett. 127, 181802 (2021)

$\Delta \mathrm{E}=\sum \mathrm{E}_{\mathrm{i}}^{\mathrm{CMS}}-\mathrm{E}_{\text {beam }}$

Dark sector search @ Belle II

In recent years, the possibility that both the DM and the particles mediating its interactions to the Standard Model (SM) have a mass of MeV to GeV-scale has gained much attraction.

- There is a small number of possible portals between dark sector and standard model:

1) VECTOR PORTAL (dark photon A', dark Z', iDM);
2) PSEUDO-SCALAR PORTAL (Axion-Like particle);
3) SCALAR PORTAL (dark scalars, extended Higgs model);
4) NEUTRINO PORTAL (sterile neutrino)

Belle II has a perfect environment where to search for dark matter or mediators :
\checkmark Hermetic 4π-detector
\checkmark well-known initial conditions
\checkmark Minimal background from collision pile-up
\checkmark Excellent Particle-ID
\checkmark Dedicated triggers for low multiplicity events

Dark sector search @ Belle II

We have a lot of analyses planned

Just to give you an idea

- ee $\rightarrow \mu \mu Z^{\prime} ;\left\{Z^{\prime} \rightarrow\right.$ inv. $\left.\left|Z^{\prime} \rightarrow \ell \ell\right| Z^{\prime} \rightarrow 4 \mu\right\}$
- ee $\rightarrow \mu \mathrm{e} Z^{\prime} ;\left\{Z^{\prime} \rightarrow\right.$ inv. $\left.\mid Z^{\prime} \rightarrow \ell \ell\right\}$
- ee $\rightarrow \gamma A^{\prime} ;\left\{A^{\prime} \rightarrow\right.$ inv. $\left.\mid A^{\prime} \rightarrow \ell \ell\right\}$
- ee $\rightarrow\{$ y a \mid ee a $\} ; a \rightarrow Y Y$
- ee \rightarrow h' $\mathrm{A}^{\prime} ; \mathrm{A}^{\prime} \rightarrow$ ll
- $b \rightarrow s\left\{h^{\prime} \mid a\right\}$

- ee $\rightarrow Y+D M ; D M \rightarrow A+i n v . ; A$ ' $\rightarrow\{$ ee $|\mu \mu| \pi \pi$ \}; "Inelastic dark matter".

- Dark QCD final states.
- Long lived (\& very) long lived particles: generic displaced vertices.
- ee \rightarrow eem${ }^{0}$; light hadronic form factor
- ee $\rightarrow \pi^{+} \Pi^{-}(\mathrm{y})$; for ($\left.\mathrm{g}-2\right)_{\mu}$
- ee $\rightarrow \mathrm{e}^{ \pm} \mathrm{e}^{ \pm} \mu^{\mp} \mu^{\mp}$
- ee $\rightarrow \tau \ell$
- ee $\rightarrow\{\mu \mathrm{e} \mid \mu \tau\}+$ missing

$$
\begin{aligned}
& b \rightarrow s \text { inv. } \\
& \text { (interpretation of b-physics } \\
& \text { golden channel } B \rightarrow K^{(*)} v v \text {). } \\
& B \rightarrow \Lambda+\text { inv. } \\
& Y(1 S) \rightarrow\{\text { inv. } \mid Y+\text { inv. }\}
\end{aligned}
$$

2020

CONF paper \#	Title	Preprints
BELLE2-CONF-PH-2020-012	Measurements of branching fractions and $C P$-violating charge asymmetries in charmless B decays reconstructed in 2019-2020 Belle II data	arXiv:2009.09452 (PDF), inspirehep
BELLE2-CONF-PH-2020-011	Measurement of Hadronic Mass Moments in $B \rightarrow X_{c} \ell \nu$ Decays at Belle II	arXiv:2009.04493 (PDF), inspirehep
BELLE2-CONF-PH-2020-010	τ lepton mass measurement at Belle II	arXiv:2008.04665 (PDF), inspirehep
BELLE2-CONF-PH-2020-009	Measurement of the semileptonic $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \nu_{\ell}$ branching fraction with fully reconstructed B meson decays and $34.6 \mathrm{fb}^{-1}$ of Belle II data	arXiv:2008.10299 (PDF), inspirehep
BELLE2-CONF-PH-2020-008	Studies of the semileptonic $\bar{B}^{0} \rightarrow D^{++} \ell^{-} \bar{\nu}_{\ell}$ and $B^{-} \rightarrow D^{0} \ell^{-} \bar{\nu}_{\ell}$ decay processes with $34.6 \mathrm{fb}^{-1}$ of Belle II data	arXiv:2008.07198 (PDF), inspirehep
BELLE2-CONF-PH-2020-007	Exclusive $B^{0} \rightarrow \pi^{-} \ell^{+} \nu_{l}$ Decays with Hadronic Full Event Interpretation Tagging in $34.6 \mathrm{fb}^{-1}$ of Belle II Data	arXiv:2008.08819 (PDF), inspirehep
BELLE2-CONF-PH-2020-006	Rediscovery of $B \rightarrow \phi K^{(*)}$ decays and measurement of the longitudinal polarization fraction f_{L} in $B \rightarrow \phi K^{*}$ decays using the Summer 2020 Belle II dataset	arXiv:2005.07507 (PDF), inspirehep
BELLE2-CONF-PH-2020-005	A calibration of the Belle II hadronic tag-side reconstruction algorithm with $B \rightarrow X \ell_{\nu}$ decays	arXiv:2008.06096 (PDF), inspirehep
BELLE2-CONF-PH-2020-004	First flavor tagging calibration using 2019 Belle II data	arXiv:2008.02707 (PDF), inspirehep
BELLE2-CONF-PH-2020-003	Measurement of the B^{0} lifetime using fully reconstructed hadronic decays in the 2019 Belle II dataset	arXiv:2005.07507 (PDF), inspirehep
BELLE2-CONF-PH-2020-002	Measurement of the branching fraction of $B^{0} \rightarrow D^{+-} l^{+} \nu_{l}$ with early Belle II data	arXiv:2004.09066 (PDF), inspirehep
BELLE2-CONF-PH-2020-001	Charmless B decay reconstruction in 2019 data	arXiv:2005.13559 (PDF), inspirehep

Belle II Conference papers in 2021

CONF paper \#	Title	Preprints
BELLE2-CONF-PH-2021-013	Exclusive Decays with Hadronic Full-event-interpretation Tagging in 62.8 of Belle II Data	arxiv:2111.00710 (PDF) inspirehep
BELLE2-CONF-PH-2021-012	Measurement of the inclusive semileptonic B meson branching fraction in $62.8 \mathrm{fb}^{-1}$ of Belle II data	arxiv:2111.09405 (PDF) inspirehep
BELLE2-CONF-PH-2021-011	Measurement of the $B^{-} \rightarrow D^{0} \ell^{-} \nu$ branching fraction in $62.8 \mathrm{fb}^{-1}$ of Belle II data	arxiv:2110.02648 (PDF) inspirehep
BELLE2-CONF-PH-2021-010	Measurement of the branching fraction for $B^{0} \rightarrow \pi^{0} \pi^{0}$ decays reconstructed in 2019-2020 Belle II data	arxiv:2107.02373 (PDF) inspirehep
BELLE2-CONF-PH-2021-008	Study of $B \rightarrow D^{(*)} h$ decays using $62.8 \mathrm{fb}^{-1}$ of Belle II data	arxiv:2104.03628 (PDF), inspirehep
BELLE2-CONF-PH-2021-006	Measurements of branching fractions and direct $C P$-violating asymmetries in $B^{+} \rightarrow K^{+} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays using 2019 and 2020 Belle II data	arxiv:2105.04111 (PDF), inspirehep
BELLE2-CONF-PH-2021-005	Measurement of the branching fractions of of $B \rightarrow \eta^{\prime} K$ decays using 2019/2020 Belle II data	arxiv:2104.06224 (PDF), inspirehep
BELLE2-CONF-PH-2021-001	First search for direct $C P$-violating asymmetry in $B^{0} \rightarrow K^{0} \pi^{0}$ decays at Belle II	arxiv:2104.14871 (PDF), inspirehep

Belle II Korean Group

Belle II Korean Group

- 참여: 9 개 기관 46 명 고려대,경북대,서울대,숭실대, 연세대,중앙대,전남대,한양대,KISTI
- 한국그룹 전체 미팅 : 2~3회/년
- Belle II HW/SW contribution:
- ECL Calorimeter Trigger Construction
- CDC Track Trigger Firmware
- SVD Vertex Detector Assembly
- DAQ Slow Control
- Data Production and Geant4 validation
- Data Handling System using AMGA

K-B2GM
Nov/5-6/2021
전남대 주관

Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165748

Trigger slow control system of the Belle II experiment
C.-H. Kim ${ }^{\text {a,* }}$, Y. Unno ${ }^{\text {a }}$, H.E. Cho ${ }^{\text {a }}$, B.G. Cheon ${ }^{\text {a, },}$, S.H. Kim ${ }^{\text {b,a }}$, I.S. Lee ${ }^{\text {b,a }}$, E.-J. Jang ${ }^{\text {c }}$,
Y.-J. Kwon ${ }^{1}$, O. Hartbrich ${ }^{\text {m }}$, M. Ritzert ${ }^{\text {n }}$

Deparment of Physics and Institute of Naturul Sciences, Haryang Univerity, Seoul 04763, South Karea

 \qquad

Belle II Korean Group

2021 Korean Belle II General Meeting
 国 5 Nov 2021，13：20 $\rightarrow 6$ Nov 2021，13．00 Asia／Seoul
 Friday， 5 Noven

13：20 $\rightarrow 18: 20$ Session：Friday Session
Conveners：Prof．Jung Keun Ahn（Korea Univeristy），Prof．Kyungkwang Joo（c）
13：20 Welcoming remarks
Speaker：Prof．Kyungkwang Joo（chonnam National Unverstry）
13：25 Opening remarks
Speaker：Prof．Doris Yangsoo Kim（soongstl University）
© email－MC14ri＿d re．．
13：30 Systematics corrections for hadron Identification at Bel Speaker：Dr Andres Ramirez Morales（kNU）
囚 kbelle＿2021＿andres．．．
13：50 Identification of low－lying \Lambda＿c＾＋baryons Speaker：Dr Hugo Garcia Tecocoatzi（（nvu） © BelleMeeting＿2021．

14：10 Lambda（1670）study with \backslash Lambda＿\｛c $\}\{+\}$ decay Speaker：Dr Seongbae Yang（Korea unverstry）
囚 20211105＿kbelle＿y．
14：30 Lambda＿c＾＋－＞Ks p p10 decay
Speaker：Young Jun Kim（Korea Universty）
囚 211105yjim．pdf
14：50 Analysis of dark photon Including e＋e－－＞mu＋mu－A＇wit Speaker：Kihong Park（UST－kIST）四 2021＿kb2gm＿dm＿k．

15：10

Coffee Break

15：30
Multivariable Analysis for charmed particle Speaker：Dr Li Jin（KNU
囚 KBelle－202111．pdf
15：50 Search for CP violation using T－odd asymmetry in the decays $\mathrm{D}(\mathrm{s})+->\mathrm{K} K+\mathrm{pl}+$ for Cablbbo suppressed decay $\mathrm{Ds}+->\mathrm{KsK}+\mathrm{K}-\mathrm{pl}+$ Speaker：Hyunki Moon（Korea Unlv）
（ᄌ）KBGM＿2111＿nkmo．．
16：10 Charmonium prospects in the Belle－II experiment
Speaker：Dr Yin Junhao（Korea Unlv．）
囚 charmonium prospe．

MC study for $\mathrm{BF}(\mathrm{D}+->\mathrm{K}+\mathrm{plO})$
Speaker：Hae－Yeon Hwang（Soongsll Unli．）
囚 KBGM 발표．pdf

Construction and operation of remote control room for Belle II Speaker：Kihyeon Cho（kIST）

囚 kbelle＿rcr＿cho＿110．．
17：20
Status on ECLTRG \＆local run callbration
Speaker：Eunji Jang（Gyeongsang National Unlversit）
囚 Eunji Jang＿Status o．．
17：40 TRGECL DQM Status Speaker：HanEol Cho（Hanyyng Univ）囚 KB2GM＿CHO＿2111．．．
$09: 00 \rightarrow 13$
．00 Session：Saturday Session
Convenera：Prof．Doris Y．Kim（soongsil unvi），Prof．Sookyung Choi（Cring Ang Unverastr）
$09: 00$ Prelliminary measurement of $A_{-}(C P)$ in $D^{\wedge} 0$ Vrightarrow $K^{\wedge}+K^{\wedge}$－and $D^{\wedge} 0$ Vrightarrow $\left.\backslash p\right|^{\wedge}+\mid p$ Speaker．Ijeong Na （soongsl Unv．）
© kbgm＿jeong＿Na．paf
$09: 20$ Rediative and electroweak penguln B decays
Speaker．Dr Shun Watanuki（ ronsel unnerstiy） （ᄌ）K82GM2021＿wata－
$09: 50 \quad \mathrm{~B} \rightarrow \mathrm{KA}^{\prime} \mathrm{A}^{\prime}\left(\mathrm{A}^{\prime} \rightarrow \mid+1-1\right)$ Speaker．Yongkyu Kim（ronsee uny © KBGM＿2021－11－06＿

10：10 B $\rightarrow \mathrm{Ka}$（ $\mathrm{a} \rightarrow$－gamma gamma） Speaker：Sungiin Cho（yonsel univ © 2021K826M．pdf
10.30 Study of $\mathrm{B+} \rightarrow \mathrm{X}_{-}$（ccbar\} $\mathrm{K}+\rightarrow$ ppbar $\mathrm{K}+$ Decays Speaker．Jaekeum Lee（ssu （ 8 20211106＿kbelle－j．

```
11:00 Inclusive B >> Xs nu nu
```

Speaker. Junewoo Park
（ \measuredangle Kв2GM＿Junewoo． ．
11：20 Search for Bo－＞KsoKsogamme and B＋－＞K＋Ksogemma Decays at the Belle II Experiment Speaker：Seungcheol Lee（kyungpoook netional unnersty，Koree） （TV 211106＿KB26M．scl．

11 Search for $\mathrm{B} \rightarrow>\mid$ tau decay with b2bll and semileptonic FEI Speaker：Dr Kyungho Kim（kstT）囚 knkim＿2 2 kbgm ＿fall．

12：00 B \rightarrow－Tau Tau Cheolhun Kim（Hanyang）

18 Data analysis talks＋ 3 Belle II operation talks

Belle II Korean Group

- Belle II 분담금 : ~1억원/년 ; 연구재단 해외대형시설활용과제 수행

한국 SuperKEKB \& Belle II 실험연구단 \mathcal{B}

```
[세부 1] Belle II 시ᄅ허ᄆ의 저ᄂ자기여ᄅ랴ᄋ계 트리거 우ᄂ요ᄋ 여ᄂ구 미ᄎ 초ᄋ과ᄅ지워ᄂ 과ᄂ리
[세부 2] Belle II 시ᄅ허ᄆ의 궤저ᄀ트리거 우ᄂ요ᄋ 미ᄎ 매호ᄀ이ᄇ자 부ᄋ괴 여ᄂ구
[세부 3] Belle II 시ᄅ허ᄆ의 시ᄅ리코ᄂ거ᄆ추ᄅ기 우ᄂ요ᄋ 미ᄎ 시ᄅ허ᄆ 데이터부ᄂ서ᄀ 여ᄂ구
[세부 4] Belle II 시ᄅ허ᄆ의 시뮤ᄅ레이셔ᄂ 소프트웨어 최저ᄀ화 미ᄎ 매호ᄀ이ᄇ자 희귀부ᄋ괴 여ᄂ구
[세부 5] SuperKEKB 추ᄋ도ᄅ혀ᄋ 가소ᄀ기의 비ᄆ 궤도 아ᄂ저ᄋ화 여ᄂ구
[세부 6] Belle II 시ᄅ허ᄆ의 B 주ᄋ가ᄂ자 희귀부ᄋ괴 타ᄆ새ᄀ과 아ᄆ흐ᄀ세ᄀ터 여ᄂ구
[세부 7] Belle II 시ᄅ허ᄆ으ᄅ 토ᄋ하ᄂ XYZ 미지이ᄇ자 여ᄂ구
[세부 8] Belle II 시ᄅ허ᄆ으ᄅ 토ᄋ하ᄂ 겨ᄋ이ᄇ자 마ᄉ까ᄅ 구조 미ᄎ 새로우ᄂ 무ᄅ리 타ᄆ새ᄀ 여ᄂ구
```

- Belle II to probe the New Physics with ultimate precision of heavy flavor decays, and to search light dark matters in GeV range as well.
- ~1 ab^{-1} Belle II data (comparable to Belle) to be ready in 2023 and many world-leading physics results available.
- $50 \mathrm{ab}^{-1}$ design goal to be accomplished by ~2031 after modification of SuperKEKB/Belle II components in LS2 (around 2026).

감사합니다.

SuperKEKB Long-term Plan

2 steps
2 steps

- Intermediate peak luminosity : $\left(1-2 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}, 5 \mathrm{ab}^{-1}\right)$
- High peak luminosity : ($6.5 \times 10^{35} / \mathrm{cm}^{2} / \mathrm{sec}, 50 \mathrm{ab}^{-1}$) with detector upgrade
- Beam polarization upgrade, advanced R\&D
- Ultra high luminosity : ($4 \times 10^{36} / \mathrm{cm}^{2} / \mathrm{sec}, 250 \mathrm{ab}^{-1}$), R\&D project

Search for Z' \rightarrow Invisible

$\mathrm{L}_{\mu}-\mathrm{L}_{\tau}$ model* :

- suggest new light gauge boson Z' only interacting with the second and the third generation of leptons;
- would explain ($\mathrm{g}-2)_{\mu}$ anomaly, $\mathrm{b} \rightarrow \mathrm{s} \mu \mu$ anomalies
* Shuve et al. (2014), arXiv:1403.2727; Altmannshofer et al. (2016), arXiv: 1609.04026

Experimental procedure :

- Used only $0.276 \mathrm{fb}^{-1}$ of Phase 2 data
- Looking for a peak in the recoil mass distribution against $\mu \mu$ lepton pair
- Nothing else in the rest of the event
- No excess observed; 90\% CL upper limit on coupling constant g': first result ever

PRL124, 141801 (2020)
Belle II $1^{\text {st }}$ physics paper

Search for Axion-Like Particle (ALP)

- ALPs are pseudo-scalars particles coupled with SM photons.
- Possible dark sector mediator and impact on ($\mathrm{g}-2)_{\mu}$ if $\mathrm{MeV}-\mathrm{GeV}$ range
- Used $0.445 \mathrm{fb}^{-1}$ of Phase 2 data
- Looking for 3-photon final state via ALP-strahlung
- Search for a bump in recoil and di-photon mass distribution

PRL 125, 161806 (2020)

- No excess observed, set 95\% CL upper limit on the ALP-photon coupling
- Limit on $\mathrm{g}_{\mathrm{ary}}$ assuming $\mathrm{BF}(\mathrm{a} \rightarrow \gamma \gamma)=100 \% \quad \sigma_{a}=\frac{g_{a \gamma \gamma}^{2} \alpha_{\mathrm{aD}}}{24}\left(1-\frac{m_{a}^{2}}{s}\right)^{3}$

FIG. 2. Distribution of the classifier output BDT_{1} (main figure) and BDT_{2} for $\mathrm{BDT}_{1}>0.9$ (inset). The distributions are shown before $\left(J / \psi_{\rightarrow \mu^{+} \mu^{-}}\right)$and after $\left(J / \psi_{\rightarrow \psi^{+} \psi^{-}}\right)$the muon removal and update of the kaon-candidate momentum of selected $B^{+} \rightarrow K^{+} J / \psi$ events in simulation (MC) and data. As a reference, the classifier outputs directly obtained from simulated $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ signal events are overlaid. The simulation histograms are scaled to the total number of $B^{+} \rightarrow K^{+} J / \psi$ events selected in data.

- Purpose of the figure
- To show performance of classifiers
- Distribution of classifier output
- (Main figure) $B D T_{1}$
- (Inset) $B D T_{2}$
- for $B D T_{1}>0.9$
- Validation
- validation with $B^{+} \rightarrow K^{+} J / \psi\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)$
- An independent validation channel)
- $\operatorname{sim} / \mathrm{data}$ 에서 mu mu 있는 경우
- mu mu 무시(ignoring)하고 모멘텀을 K+에
- generator-level
- mimic $B^{+} \rightarrow K^{+} v \bar{v}$

Full Event Interpretation

Multivariate algorithm for exclusive tagging of one B meson
Comp. and Soft. For Big Sci. 3, 6 (2019)
in a $\Upsilon(4 S)$ decay using hierarchal approach with six stages of objects.

Displaced Vertices
Neutral Clusters
Over $100 B$ meson decay channels and over 10,000 decay cascades
Tagging efficiency of B^{+} / B^{0} at 10% purity in Belle MC

Tagging Algorithm	Hadronic	Semileptonic
Full Reconstruction	$0.28 \% / 0.18 \%$	$0.67 \% / 0.63 \%$
FEI	$0.78 \% / 0.46 \%$	$1.80 \% / 2.04 \%$

The performance calibration is made with $B \rightarrow X \ell v$
arXiv:2008.06096

$N_{X e v}$ is determined by the fit on p_{ℓ}^{*} distribution both in data and in MC.
\rightarrow The calibration factor $\epsilon_{\text {cal }}=N_{X \ell v}^{\text {data }} / N_{X \ell v}^{\mathrm{MC}}$

Towards ϕ_{2} / α

- Accessible via $b \rightarrow u$ transitions with large contribution from penguin $(b \rightarrow d)$ diagrams

- Unique Belle II capability to determine ϕ_{2} / α by $B^{0} \rightarrow \pi^{0} \pi^{0}, B^{+} \rightarrow \rho^{+} \rho^{0}$
- $B^{0} \rightarrow \pi^{0} \pi^{0}$ is very challenging due to four photons in final state
- Main background is from continuum π^{0}
- Dedicated MVA for photon selection arXiv:2107.02373
- $\mathscr{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=\left[0.98_{-0.39}^{+0.48}(\right.$ stat $) \pm 0.27($ syst $\left.)\right] \times 10^{-6}$
- $B^{+} \rightarrow \rho^{+} \rho^{0}$ is pion only final state
- Main background due to ρ mass width
- Branching ratio is compatible with WA

$$
\begin{gathered}
\Delta E=E_{B}^{*}-E_{\text {beam }} \\
M_{\mathrm{bc}}=\sqrt{E_{\text {beam }}^{2}-\vec{p}_{B}^{2}}
\end{gathered}
$$

- $\mathscr{B}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=[20.6 \pm 3.2($ stat $) \pm 4.0($ syst $)] \times 10^{-6}$

First reconstruction in Belle II data \rightarrow preparing for measurement of α / ϕ_{2}

ϕ_{3} / γ Measurement with Combined Belle + Belle II Data

- $B^{-} \rightarrow D^{0}\left(K_{S}^{0} \pi^{+} \pi^{-}\right) K^{-}$is the golden mode for γ / ϕ_{3} measurement for Belle/Belle II.

- Using BPGGSZ model independent approach

$$
\frac{\mathcal{A}^{\text {suppr. }}\left(B^{-} \rightarrow \overline{D^{0}} K^{-}\right)}{\mathcal{A}^{\text {favor. }}\left(B^{-} \rightarrow D^{0} K^{-}\right)}=r_{B} e^{i\left(\delta_{B}+\phi_{3}\right)}
$$

- r_{B} : magnitude of the ratio of amplitudes
- δ_{B} : strong phase difference
- Dominant and clean decay $\underline{B^{-} \rightarrow D^{(*) 0} \pi^{-}}$

 and $\underline{B}^{0} \rightarrow D^{(*)+} \pi^{-}$provide good control sample.
Signal enhanced with $M_{\mathrm{bc}}>5.27 \mathrm{GeV} / \mathrm{c}^{2}$ and PID to K / π from signal B
\bullet Unbinned ML fit in ΔE and MVA output (with event shape variables).

ϕ_{3} / γ Measurement with Combined Belle + Belle II Data

- First Belle and Belle II combined measurement

Belle+Belle II $\int \mathcal{L} \mathrm{dt}=(711+128) \mathrm{fb}^{-1}$

$$
\begin{aligned}
\phi_{3} & =(78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ} \\
r_{B}^{D K} & =0.129 \pm 0.024 \pm 0.001 \pm 0.002 \\
\delta_{B}^{D K} & =(124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}
\end{aligned}
$$

- Statistical uncertainty improved by 30% with just 20% more data
- Experimental systematics reduced from 4° to 0.5°
- Systematics associated with inputs reduced from 4° to 1° due to recent updates from by BESIII
arXiv:2110.12125
Submitted to JHEP

 and inclusive \boldsymbol{B} decays.
- First look with $63 \mathrm{fb}^{-1}$ data

$$
R_{K^{(*)}}:=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)} \stackrel{\mathrm{SM}}{\cong} 1
$$

Any significant
deviation is hint for non-SM Physics!!

- 2 D fit to $\Delta E=E_{B}^{*}-E_{\text {beam }}$ and $M_{\mathrm{bc}}=\sqrt{E_{\text {beam }}^{2}-\vec{p}_{B}^{2}}$ distribution
- Signal Yield : $8.6_{-3.9}^{+4.3} \pm 0.4$ events

More data needed for \mathscr{B} and R_{K} measurement

Inclusive $B \rightarrow X_{c} \ell \nu$

- Different strategies may help resolve the inclusive/exclusive discrepancy in $b \rightarrow c \ell \nu$ and $b \rightarrow u \ell \nu$
- Measure q^{2}-moments (moments of lepton energy or hadronic mass) to simultaneously determine non perturbative elements and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

```
arXiv: 2109.01685
```

- Belle II performed both the untagged and the hadronic tagged analyses.

- Untagged analysis

- Require one well identified lepton
- Exploit missing mass and momentum to reject backgrounds
- Measure the branching fraction with a fit to p_{l}^{*}

$$
\mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)=(9.75 \pm 0.03 \text { (stat) } \pm 0.47 \text { (syst) }) \%
$$

Next: $\left|V_{c b}\right|$ from q^{2} moments

Exclusive $B \rightarrow D^{(*)} \ell \nu$

- $B \rightarrow D^{(*)} \ell \nu$ has been explored with both tagged and untagged approaches
- Tagged analysis
- Almost zero background after tag
- Signal selection from D^{*} and D^{0} invariant masses, and lepton momentum

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{l}\right)=\left(4.51 \pm 0.41_{\text {stat }} \pm 0.27_{\text {syst }} \pm 0.45_{\pi_{s}}\right) \%
$$

