

Belle II

천병구 (한양대)

On behalf of the Belle II Collaboration

Korean-DPF Workshop, DEC/17-18/2021

Why SuperKEKB/Belle II ?

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction			Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\int 10^{-18} m$	10-41	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10-4	1	60

Why SuperKEKB/Belle II ?

- Search for the New Physics beyond the SM
- Direct new particle production : ATLAS/CMS @LHC
 - So far, no evidence of the New Physics from LHC
- Indirect new particle contribution : Belle II @SuperKEKB

LHC 실험과 Belle II 실험의 상보성

Belle II @ SuperKEKB

Belle II @ Super-KEKB

Intensity frontier B-factory experiment, Successor to Belle @KEKB (1999-2010)

1km

Belle II
detector7 GeV e⁻, 4 GeV e⁺Belle II
betectorE_{CM} Y(4S) = 10.58 GeV + scans

Y(4S) → B anti-B

B + Charm + T factory

~1120 active members from 123 institutes in 26 countries

Belle II @ SuperKEKB

- Successor to Belle @ KEKB (~1 ab⁻¹)
- No enough Belle data for the New Physics beyond the SM
- Plan to collect 50 ab⁻¹ of collisions mostly at Y(4S)
- SuperKEKB peak luminosity design goal is 8 x 10³⁴/cm²/sec

	E(GeV) e+ / e-	β* _y e+ / e-	l(A) e+ / e-	Peak £ (cm ⁻² s ⁻¹)
KEKB	3.5 / 8.0	5.9 / 5.9	1.6 / 1.2	2.1 × 10 ³⁴
SuperKEKB	4.0 / 7.0	0.27 / 0.30	3.6 / 2.6	80 × 10 ³⁴

- <u>Beam current: ×2 (High RF power)</u>
- <u>Beam size: x 1/20 (Nano-beam; low emittance, compact and strong focusing quads; QCS)</u>
 - Nano-Beam Scheme

The Belle II detector

Belle II operation status

- Collected 213.6 fb⁻¹ by 2021ab run
- World highest peak luminosity: 3.12 x 10³⁴ cm⁻²s⁻
- Resumed Belle II operation (2021c run)
- LS1 planned for PXD/TOP system upgrade after collecting Belle II data comparable to Belle
- Data taking continued even in the covid-19 situation with caution.

Belle II Physics

Belle II Physics Program

Belle II vs LHCb

Observable	SM prediction	Theory error	Present result	Future error	Future Facility
$ V_{us} ~~[K \to \pi \ell \nu]$	input	$0.5\% \rightarrow 0.1\%_{\rm Latt}$	0.2246 ± 0.0012	0.1%	K factory
$ V_{cb} $ $[B \to X_c \ell \nu]$	input	1%	$(41.54\pm0.73)\times10^{-3}$	1%	Super-B
$ V_{ub} $ $[B \rightarrow \pi \ell \nu]$	input	$10\% \to 5\%_{\rm Latt}$	$(3.38\pm 0.36)\times 10^{-3}$	4%	Super-B
$\gamma \qquad [B \to DK]$	input	$< 1^{\circ}$	$(70^{+27}_{-30})^{\circ}$	3°	LHCb
$S_{B_d \rightarrow \psi K}$	$sin(2\beta)$	$\lesssim 0.01$	0.671 ± 0.023	0.01	LHCb
$S_{B_s \to \psi \phi}$	0.036	$\lesssim 0.01$	$0.81\substack{+0.12\\-0.32}$	0.01	LHCb
$S_{B_d \to \phi K}$	$sin(2\beta)$	$\lesssim 0.05$	0.44 ± 0.18	0.1	LHCb
$S_{B_s \to \phi \phi}$	0.036	$\lesssim 0.05$	—	0.05	LHCb
$S_{B_d \to K^* \gamma}$	few \times 0.01	0.01	-0.16 ± 0.22	0.03	Super-B
$S_{B_s \to \phi \gamma}$	few \times 0.01	0.01	—	0.05	LHCb
$A^d_{ m SL}$	$-5 imes 10^{-4}$	10^{-4}	$-(5.8\pm 3.4)\times 10^{-3}$	10^{-3}	LHCb
$A^s_{ m SL}$	$2 imes 10^{-5}$	$< 10^{-5}$	$(1.6 \pm 8.5) \times 10^{-3}$	10^{-3}	LHCb
$A_{CP}(b \rightarrow s\gamma)$	< 0.01	< 0.01	-0.012 ± 0.028	0.005	Super-B
$\mathcal{B}(B \to \tau \nu)$	$1 imes 10^{-4}$	$20\% \to 5\%_{\rm Latt}$	$(1.73\pm 0.35)\times 10^{-4}$	5%	Super-B
$\mathcal{B}(B \to \mu \nu)$	4×10^{-7}	$20\% \to 5\%_{\rm Latt}$	$< 1.3 \times 10^{-6}$	6%	Super-B
$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3 imes 10^{-9}$	$20\% \to 5\%_{\rm Latt}$	$<5\times 10^{-8}$	10%	LHCb
$\mathcal{B}(B_d \to \mu^+ \mu^-)$	$1 imes 10^{-10}$	$20\% \to 5\%_{\rm Latt}$	$< 1.5 \times 10^{-8}$	[?]	LHCb
$A_{\rm FB}(B\to K^*\mu^+\mu^-)_{q_0^2}$	0	0.05	(0.2 ± 0.2)	0.05	LHCb
$B \to K \nu \bar{\nu}$	4×10^{-6}	$20\% \to 10\%_{\rm Latt}$	$< 1.4 \times 10^{-5}$	20%	Super-B
$ q/p _{D-\text{mixing}}$	1	$< 10^{-3}$	$(0.86^{+0.18}_{-0.15})$	0.03	Super-B
ϕ_D	0	$< 10^{-3}$	$(9.6^{+8.3}_{-9.5})^{\circ}$	2°	Super-B
$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$	8.5×10^{-11}	8%	$(1.73^{+1.15}_{-1.05}) \times 10^{-10}$	10%	K factory
$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$	2.6×10^{-11}	10%	$<2.6\times10^{-8}$	[?]	K factory
$R^{(e/\mu)}(K \to \pi \ell \nu)$	2.477×10^{-5}	0.04%	$(2.498\pm0.014)\times10^{-5}$	0.1%	K factory
$\mathcal{B}(t \to c Z, \gamma)$	$O(10^{-13})$	$O(10^{-13})$	$< 0.6 \times 10^{-2}$	$O(10^{-5})$	LHC (100fb^{-1})

Complementary to each other

Property	LHCb		Belle II
$\sigma_{b\bar{b}}$ (nb)	~150,000 😧		~1
$\int L dt$ (fb ⁻¹)	~25	()	~50,000
Background level	High	()	Low
Typical efficiency	Low		High
π^0 , K_S efficiency	Low		High
Initial state	Not well known	٢	Well known
Initial state Decay-time resolution	Not well known Excellent	:	Well known Good
			
Decay-time resolution	Excellent 🙂		Good
Decay-time resolution Collision spot size	Excellent 🕑 Large		Good Tiny

adapted from

1. Flavor Physics Constraints for Physics Beyond the Standard Model Gino Isidori (Frascati & TUM-IAS, Munich), Yosef Nir, Gilad Perez (Weizmann Inst.). Feb 2010. 33 pp. Published in Ann.Rev.Nucl.Part.Sci. 60 (2010) 355

Belle II Physics Results

Belle II Physics Results

- Many data analyses of various physics sectors have been performed.
 - 20 conference papers are available.
- 4 physics journal papers published.

Precise measurement of the D^0 and D^+ lifetimes at Belle II	Phys. Rev. Lett. 127, 211801 (2021)
	DOI: 10.1103/PhysRevLett.127.211801
Search for $B^+ o K^+ u ar u$ decays using an inclusive tagging method at Belle II	Phys. Rev. Lett. 127, 181802 (2021) DOI: 10.1103/PhysRevLett.127.181802
Search for Axionlike Particles Produced in e^+e^- Collisions at Belle II	Phys. Rev. Lett. 125, 161806 (2020) DOI: 10.1103/PhysRevLett.125.161806
Search for an Invisibly Decaying Z' Boson at Belle II in $e^+e^- o\mu^+\mu^-(e^\pm\mu^\mp)$ Plus Missing Energy Final States	Phys. Rev. Lett. 124, 141801 (2020) DOI: 10.1103/PhysRevLett.124.141801

Candidates per 1 MeV/c

1.75

- Lifetime measurements test effective QCD models and provide guidance to describe strong interactions
- High precision measurement
 - Excellent vertex detector alignment
 - Precise calibration of final state particle momenta
- Data sample
 - 72 fb⁻¹ Belle II dataset
 - High-purity golden decay modes
 - Reconstruct $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi_s^+$ $D^{*+} \rightarrow D^+ (\rightarrow K^- \pi^+ \pi^+) \pi_s^0$ from mostly $e^+e^- \rightarrow c\bar{c}$

 $= m_D$

 $m(K^{-}\pi^{+})$ [GeV/c²]

 $m(K^{-}\pi^{+}\pi^{+})$ [GeV/c²]

8.8% bkg

D⁰/D⁺ lifetime measurements @ Belle II

- Unbinned ML fit to (t, σ_t)
- Resolution ~ 60-70 fs

TABLE I. Systematic uncertainties.

Source	$ au(D^0)$ [fs]	$ au(D^+)$ [fs]
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

*D*⁰/*D*⁺ lifetime measurements @ Belle II

Phys. Rev. Lett. 127, 211801 (2021)

$$\tau(D^0) = 410 \pm 1.1(\text{stat}) \pm 0.8(\text{syst}) \text{ fs}$$

$$\tau(D^+) = 1030.4 \pm 4.7(\text{stat}) \pm 3.1(\text{syst}) \text{ fs}$$

$$\frac{\tau(D^+)}{\tau(D^0)} = 2.510 \pm 0.013(\text{stat}) \pm 0.007(\text{syst})$$

- Most precise to date
- Consistent with other experiments
- Demonstrated excellent vertexing capabilities
- Confirmed understanding of systematic effect
- Impact future decay-time-dependent analyses

$B^+ \rightarrow K^+ v \ \overline{v} \text{ decay } @$ Belle II

B signal reconstruction @ Belle II : Tagged Analysis

1. Tagged Analysis

One B meson from $\Upsilon(4S)$ decay is exclusively reconstructed to tag $B\overline{B}$ events.

Κ

 π

D

π

2. <u>Untagged Analysis</u> (Inclusive Tagged Analysis)

Signal

decay

Reconstruct only signal B decay and treat the other particles not in B_{sig} as rest-of-event information.

Full Event Interpretation (FEI): Comp. and Soft. For Big Sci. 3, 6 (2019) Multivariate algorithm for exclusive tagging of one B meson in a $\Upsilon(4S)$ decay using hierarchal approach.

 $\sqrt{B_{sig}}$

Over 100 *B* meson decay channels and over 10,000 decay cascades

B_{tag}∗

 $\Upsilon(4S)$

Improved effiiciency up to 50% relatively with respect to conventional approaches!

arXiv:2008.06096

B signal reconstruction @ Belle II : Untagged Analysis

 $B^+ \rightarrow K^+ v \ \overline{v} \ decay @ Belle II$

- Complementary probe of BSM physics scenarios with $b \rightarrow s\ell\ell$ transitions.
- Not observed yet..
- SM prediction: $\mathcal{B}(B \to K\nu\overline{\nu})_{SM} = (4.6 \pm 0.5) \times 10^{-6}$

T. Blake et al., Prog. Part. Nucl. Phys. 92 (2017) 50

- Previous Belle analyses
 - Advantage for e⁺e⁻ collisions : E_{cm} is fixed Signature : missing energy (peaking at zero)
 - B meson tagging (Full Recon. on opposite side) Hadronic tagging $\varepsilon_{sig^{x}}\varepsilon_{tag} \sim 0.04\%$ Semileptonic tagging $\varepsilon_{sig^{x}}\varepsilon_{tag} \sim 0.20\%$
- New approach at Belle II :
 - "Inclusive tagging" for the first time!
 - Belle II data (only), 63 fb⁻¹

Experiment	Year	Observed limit on ${\rm BR}(B^+\to K^+\nu\bar\nu)$	Approach	Data[fb ⁻¹]
BABAR	2013	$< 1.6 imes 10^{-5}$ [Phys.Rev.D87,112005]	SL + Had tagging	429
Belle	2013	< 5.5 × 10 ⁻⁵ [Phys.Rev.D87,111103(R)]	Had tagging	711
Belle	2017	< 1.9 × 10 ⁻⁵ [Phys.Rev.D96,091101(R)]	SL tagging	711

$B^+ \rightarrow K^+ v \ \overline{v} \ decay @ Belle II$

- Signal reconstructed as the highest p_T track
- Inclusive reconstruction of the rest-of-event (ROE)
- Inclusive tagging: Train two Boosted Decision Trees (BDTs) in cascade to suppress backgrounds using 51 input parameters such as event shape and ROE...
 - -- BDT₁ : Discriminate signals mainly by topological features
 - -- BDT_2 : Improve purity of signals in events with $BDT_1 > 0.9$

 $\mathcal{B}(B \to K \nu \overline{\nu}) \le 4.1 \times 10^{-5} \ (90\% \ CL)$

Phys. Rev. Lett. 127, 181802 (2021)

Dark sector search @ Belle II

In recent years, the possibility that both the DM and the particles mediating its interactions to the Standard Model (SM) have a mass of MeV to GeV–scale has gained much attraction.

• There is a small number of possible portals between dark sector and standard model:

VECTOR PORTAL (dark photon A', dark Z', iDM);
 PSEUDO-SCALAR PORTAL (Axion-Like particle);
 SCALAR PORTAL (dark scalars, extended Higgs model);
 NEUTRINO PORTAL (sterile neutrino)

Belle II has a perfect environment where to search for dark matter or mediators :

- ✓ Hermetic 4π -detector
- ✓ well-known initial conditions
- ✓ Minimal background from collision pile-up
- ✓ Excellent Particle-ID
- ✓ Dedicated triggers for low multiplicity events

Dark sector search @ Belle II

- Dark QCD final states.
- Long lived (& very) long lived particles: generic displaced vertices.
- ee \rightarrow ee π^{0} ; light hadronic form factor
- ee $\rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}(\gamma)$; for (g–2) $_{\!\mu}$
- ee $\rightarrow e^{\pm}e^{\pm}\mu^{\mp}\mu^{\mp}$
- $ee \rightarrow \tau l$
- ee \rightarrow { $\mu e \mid \mu \tau$ } + missing

b → s inv. (interpretation of b-physics golden channel B → K^(*)vv).
B → Λ + inv.
Y(1S) → { inv. | γ + inv. }

Belle II Conference papers in 2020

CONF paper #	Title	Preprints
BELLE2-CONF-PH-2020-012	Measurements of branching fractions and CP-violating charge asymmetries in charmless B_decays reconstructed in 2019-2020 Belle II data	arXiv:2009.09452 (PDF), inspirehep
BELLE2-CONF-PH-2020-011	Measurement of Hadronic Mass Moments in $B o X_c \ell u$ Decays at Belle II	arXiv:2009.04493 (PDF), inspirehep
BELLE2-CONF-PH-2020-010	au lepton mass measurement at Belle II	arXiv:2008.04665 (PDF), inspirehep
BELLE2-CONF-PH-2020-009	Measurement of the semileptonic $ar{B}^0 o D^{*+}\ell^- u_\ell$ branching fraction with fully reconstructed B meson decays and 34.6 fb^{-1} of Belle II data	arXiv:2008.10299 (PDF), inspirehep
BELLE2-CONF-PH-2020-008	Studies of the semileptonic $ar{B}^0 o D^{*+}\ell^-ar{ u}_\ell$ and $B^- o D^0\ell^-ar{ u}_\ell$ decay processes with 34.6 fb^{-1} of Belle II data	arXiv:2008.07198 (PDF), inspirehep
BELLE2-CONF-PH-2020-007	Exclusive $B^0 o \pi^-\ell^+ u_l$ Decays with Hadronic Full Event Interpretation Tagging in 34.6 fb^{-1} of Belle II Data	arXiv:2008.08819 (PDF), inspirehep
BELLE2-CONF-PH-2020-006	Rediscovery of $B o \phi K^{(*)}$ decays and measurement of the longitudinal polarization fraction f_L in $B o \phi K^*$ decays using the Summer 2020 Belle II dataset	arXiv:2005.07507 (PDF), inspirehep
BELLE2-CONF-PH-2020-005	A calibration of the Belle II hadronic tag-side reconstruction algorithm with $B o X \ell u$ decays	arXiv:2008.06096 (PDF), inspirehep
BELLE2-CONF-PH-2020-004	First flavor tagging calibration using 2019 Belle II data	arXiv:2008.02707 (PDF), inspirehep
BELLE2-CONF-PH-2020-003	Measurement of the B^0 lifetime using fully reconstructed hadronic decays in the 2019 Belle II dataset	arXiv:2005.07507 (PDF), inspirehep
BELLE2-CONF-PH-2020-002	Measurement of the branching fraction of $B^0 o D^{*-} l^+ u_l$ with early Belle II data	arXiv:2004.09066 (PDF), inspirehep
BELLE2-CONF-PH-2020-001	Charmless B decay reconstruction in 2019 data	arXiv:2005.13559 (PDF), inspirehep

Belle II Conference papers in 2021

CONF paper #	Title	Preprints
BELLE2-CONF-PH-2021-013	Exclusive Decays with Hadronic Full-event-interpretation Tagging in 62.8 of Belle II Data	arxiv:2111.00710 (PDF) inspirehep
BELLE2-CONF-PH-2021-012	Measurement of the inclusive semileptonic B meson branching fraction in 62.8 fb^{-1} of Belle II data	arxiv:2111.09405 (PDF) inspirehep
BELLE2-CONF-PH-2021-011	Measurement of the $B^- o D^0 \ell^- u$ branching fraction in 62.8 fb^{-1} of Belle II data	arxiv:2110.02648 (PDF) inspirehep
BELLE2-CONF-PH-2021-010	Measurement of the branching fraction for $B^0 o \pi^0 \pi^0$ decays reconstructed in 2019-2020 Belle II data	arxiv:2107.02373 (PDF) inspirehep
BELLE2-CONF-PH-2021-008	Study of $B o D^{(st)} h$ decays using 62.8 fb^{-1} of Belle II data	arxiv:2104.03628 (PDF), inspirehep
BELLE2-CONF-PH-2021-006	Measurements of branching fractions and direct CP -violating asymmetries in $B^+ o K^+\pi^0$ and $B^+ o\pi^+\pi^0$ decays using 2019 and 2020 Belle II data	arxiv:2105.04111 (PDF), inspirehep
BELLE2-CONF-PH-2021-005	Measurement of the branching fractions of $\ { m of} \ B o \eta' K$ decays using 2019/2020 Belle II data	arxiv:2104.06224 (PDF), inspirehep
BELLE2-CONF-PH-2021-001	First search for direct CP -violating asymmetry in $B^0 o K^0 \pi^0$ decays at Belle II	arxiv:2104.14871 (PDF), inspirehep

Belle II Korean Group

Belle II Korean Group

K-B2GM

전남대 주관

- 참여: 9개 기관 46명 고려대,경북대,서울대,숭실대, 연세대,중앙대,전남대,한양대,KISTI
- 한국그룹 전체 미팅: 2~3회/년
- Belle II HW/SW contribution :
- **ECL Calorimeter Trigger Construction**
- **CDC Track Trigger Firmware**
- **SVD Vertex Detector Assembly**
- **DAQ Slow Control**
- Data Production and Geant4 validation
- Data Handling System using AMGA

Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165748

Trigger slow control system of the Belle II experiment

C.-H. Kim^{a,*}, Y. Unno^a, H.E. Cho^a, B.G. Cheon^{a,*}, S.H. Kim^{b,a}, I.S. Lee^{b,a}, E.-J. Jang^c, S.-K. Choi^c, Y.J. Kim^d, J.K. Ahn^d, M. Remnev^{e,f}, A. Kuzmin^{e,f}, T. Koga^g, Y.-T. Lai^g, Y. Iwasaki^g, H. Nakazawa^h, D. Liventsev^{1,g}, M. Nakao^{g,J}, S. Yamada^g, R. Itoh^g, T. Konno^k, S.-H. Park^{g,J}, Y.-J. Kwon¹, O. Hartbrich^m, M. Ritzertⁿ

^a Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763, South Korea ^b Institute for Basic Science, Daejeon 34126, South Korea 6 Gyeongsang National University, Jinju 52828, South Korea d Korea University, Seoul 02841, South Korea ⁶ Budker Institute of Nuclear Division SB PAS, Nonosibirsk 620000, Pussian Enderatio

Belle II Korean Group

• Belle II 분담금 : ~1억원/년 ; 연구재단 해외대형시설활용과제 수행

[세부 1] Belle II 실험의 전자기열량계 트리거 운용 연구 및 총괄지원 관리 [세부 2] Belle II 실험의 궤적트리거 운용 및 매혹입자 붕괴 연구 [세부 3] Belle II 실험의 실리콘검출기 운용 및 실험 데이터분석 연구 [세부 4] Belle II 실험의 시뮬레이션 소프트웨어 최적화 및 매혹입자 희귀붕괴 연구 [세부 5] SuperKEKB 충돌형 가속기의 빔 궤도 안정화 연구 [세부 6] Belle II 실험의 B 중간자 희귀붕괴 탐색과 암흑섹터 연구 [세부 7] Belle II 실험을 통한 XYZ 미지입자 연구 [세부 8] Belle II 실험을 통한 경입자 맛깔 구조 및 새로운 물리 탐색 연구

- Belle II to probe the New Physics with ultimate precision of heavy flavor decays, and to search light dark matters in GeV range as well.
- ~1 ab⁻¹ Belle II data (comparable to Belle) to be ready in 2023 and many world-leading physics results available.
- 50 ab⁻¹ design goal to be accomplished by ~2031 after modification of SuperKEKB/Belle II components in LS2 (around 2026).

감사합니다.

SuperKEKB Long-term Plan

2 steps

+

2 steps

- Intermediate peak luminosity : (1-2 x10³⁵/cm²/sec, 5 ab⁻¹)
- High peak luminosity : (6.5 x 10³⁵/cm²/sec, 50 ab⁻¹) with detector upgrade
- Beam polarization upgrade, advanced R&D
- Ultra high luminosity : (4 x 10³⁶/cm²/sec, 250 ab⁻¹), R&D project

- Belle II Vertex Detector
- · 2-layer all-silicon pixel detector (PXD)
 - 1 st layer of PXD fully installed (4 M pixels)
 - innermost PXD layer is only 1.4 cm from the IP (factor 2 nearer than Belle)
 - very low material budget (0.21% X₀/ layer)
- · 4-layer double-sided silicon strip detector (SVD)
- factor 2 improvement in the impact parameter resolution vs. Belle

Search for Z' \rightarrow Invisible

μ, τ.

μ', τ'

 $L_{\mu} - L_{\tau} \text{ model}^*$:

- suggest new light gauge boson Z' only interacting with the second and the third generation of leptons;
- would explain $(g-2)_{\mu}$ anomaly, $b \rightarrow s\mu\mu$ anomalies

* Shuve et al. (2014), arXiv:1403.2727; Altmannshofer et al. (2016), arXiv: 1609.04026

Experimental procedure :

- Used only 0.276 fb⁻¹ of Phase 2 data
- Looking for a peak in the recoil mass distribution against μμ lepton pair
- Nothing else in the rest of the event 10^2
- No excess observed; 90% CL upper limit on coupling constant g': first result ever

PRL124, 141801 (2020) Belle II 1st physics paper

Search for Axion-Like Particle (ALP)

- ALPs are pseudo-scalars particles coupled with SM photons.
- Possible dark sector mediator and impact on $(g-2)_{\mu}$ if MeV-GeV range
- Used 0.445 fb⁻¹ of Phase 2 data
- Looking for 3-photon final state via ALP-strahlung
- Search for a bump in recoil and di-photon mass distribution

PRL 125, 161806 (2020)

- No excess observed, set 95% CL upper limit on the ALP-photon coupling
- Limit on $g_{a\gamma\gamma}$ assuming BF($a \rightarrow \gamma\gamma$) = 100%

FIG. 2. Distribution of the classifier output BDT₁ (main figure) and BDT₂ for BDT₁ > 0.9 (inset). The distributions are shown before $(J/\psi_{\rightarrow\mu^+\mu^-})$ and after $(J/\psi_{\rightarrow\mu^+\mu^-})$ the muon removal and update of the kaon-candidate momentum of selected $B^+ \rightarrow K^+ J/\psi$ events in simulation (MC) and data. As a reference, the classifier outputs directly obtained from simulated $B^+ \rightarrow K^+ \nu \bar{\nu}$ signal events are overlaid. The simulation histograms are scaled to the total number of $B^+ \rightarrow K^+ J/\psi$ events selected in data.

- Purpose of the figure
 - To show performance of classifiers
- Distribution of classifier output
 - (Main figure) BDT₁
 - (Inset) BDT₂
 - for $BDT_1 > 0.9$
- Validation
 - validation with $B^+ \rightarrow K^+ J/\psi (J/\psi \rightarrow \mu^+ \mu^-)$
 - An independent validation channel)
 - sim / data 에서 mu mu 있는 경우
 - mu mu 무시(ignoring)하고 모멘텀을 K+에
 - generator-level
 - mimic $B^+ \to K^+ \nu \bar{\nu}$

Full Event Interpretation

Multivariate algorithm for exclusive tagging of one B meson in a $\Upsilon(4S)$ decay using hierarchal approach with six stages of objects.

Over 100 B meson decay channels and over 10,000 decay cascades

Tagging efficiency of B^+/B^0 at 10% purity in Belle MC

Tagging Algorithm	Hadronic	Semileptonic
Full Reconstruction	0.28%/0.18%	0.67%/0.63%
FEI	0.78%/0.46%	1.80%/2.04%

Towards ϕ_2/α

• Accessible via $b \rightarrow u$ transitions with large contribution from penguin $(b \rightarrow d)$ diagrams

arXiv:2107.02373

arXiv:2109.11456v2

- Unique Belle II capability to determine ϕ_2/α by $B^0 \to \pi^0 \pi^0$, $B^+ \to \rho^+ \rho^0$
- $B^0 \rightarrow \pi^0 \pi^0$ is very challenging due to four photons in final state
 - Main background is from continuum π^0
 - Dedicated MVA for photon selection
 - $\mathscr{B}(B^0 \to \pi^0 \pi^0) = [0.98^{+0.48}_{-0.39}(\text{stat}) \pm 0.27(\text{syst})] \times 10^{-6}$
- $B^+ \rightarrow \rho^+ \rho^0$ is pion only final state
 - Main background due to ρ mass width •
 - Branching ratio is compatible with WA
 - $\mathscr{B}(B^+ \to \rho^+ \rho^0) = [20.6 \pm 3.2(\text{stat}) \pm 4.0(\text{syst})] \times 10^{-6}$

First reconstruction in Belle II data \rightarrow preparing for measurement of α/ϕ_2

ϕ_3/γ Measurement with Combined Belle + Belle II Data

- $B^- \to D^0(K_S^0 \pi^+ \pi^-) K^-$ is the golden mode for γ/ϕ_3 measurement for Belle/Belle II.
- Using BPGGSZ model independent approach

$$\frac{\mathcal{A}^{suppr.}(B^- \to \overline{D^0}K^-)}{\mathcal{A}^{favor.}(B^- \to D^0K^-)} = r_B e^{i(\delta_B + \phi_3)}$$

- r_B : magnitude of the ratio of amplitudes
- δ_B : strong phase difference
- Dominant and clean decay $\underline{B^-} \to D^{(*)0}\pi^$ and $\underline{B^0} \to D^{(*)+}\pi^-$ provide good control sample.

Signal enhanced with

 $M_{\rm bc} > 5.27 \text{ GeV/c}^2 \text{ and PID to } K/\pi \text{ from }$ signal B

• Unbinned ML fit in ΔE and MVA output (with event shape variables).

∆E [GeV]

0.15

0.8

0.7

ϕ_3/γ Measurement with Combined Belle + Belle II Data

• First Belle and Belle II combined measurement

```
Belle+Belle II \int \mathcal{L} dt = (711 + 128) \text{ fb}^{-1}
```

 $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^{\circ},$ $r_B^{DK} = 0.129 \pm 0.024 \pm 0.001 \pm 0.002,$ $\delta_B^{DK} = (124.8 \pm 12.9 \pm 0.5 \pm 1.7)^{\circ}.$

- Statistical uncertainty improved by 30 % with just 20 % more data
- Experimental systematics reduced from 4° to 0.5°
- Systematics associated with inputs reduced from 4° to 1° due to recent updates from by BESIII

$B^+ \to K^+ \ell^+ \ell^-$

- Important FCNC decay measurement $B^+ \rightarrow K^+ \ell^+ \ell^-$ (l = e, μ) sensitive to many SM extensions.
- BDT (event shape, vertex related and missing energy variables) to suppress background from **light quark** and **inclusive** *B* decays.

Candidates / (3 MeV/c²)

12

5.2

• First look with 63 fb⁻¹ data

measurement

Inclusive $B \to X_c \ell \nu$

- Different strategies may help resolve the inclusive/exclusive discrepancy in $b \rightarrow c\ell\nu$ and $b \rightarrow u\ell\nu$
- Measure q^2 -moments (moments of lepton energy or hadronic mass) to simultaneously determine non perturbative elements and $|V_{cb}|$
- Belle II performed both the <u>untagged</u> and the hadronic tagged analyses.
- Untagged analysis
- Require one well identified lepton
- Exploit missing mass and momentum to reject backgrounds
- Measure the branching fraction with a fit to p_1^*

 $\mathscr{B}(B \rightarrow X_c \ell \nu) = (9.75 \pm 0.03(\text{stat}) \pm 0.47(\text{syst}))\%$

Next: $|V_{cb}|$ from q^2 moments

arXiv: 2109.01685

Exclusive $B \to D^{(*)} \ell \nu$

- $B \to D^{(*)} \ell \nu$ has been explored with both tagged and untagged approaches
- Tagged analysis
- Almost zero background after tag
- Signal selection from D^* and D^0 invariant masses, and lepton momentum

$$\mathcal{B}(\overline{B}^0 \to D^{*+} \ell^- \overline{\nu}_l) = \left(4.51 \pm 0.41_{\text{stat}} \pm 0.27_{\text{syst}} \pm 0.45_{\pi_s}\right)\%$$

- Untagged analysis
 - Signal selection from $\cos \theta_{B,Y}$ where $\theta_{B,Y}$ is angle b/w *B* and direction of $D^* \ell / D^0 \ell$ system

$$\mathcal{B}(B^- \to D^0 \ell^- \overline{\nu}_l) = (2.29 \pm 0.05_{\text{stat}} \pm 0.08_{\text{syst}})\%$$

