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Introduction - Machine Learning

Machine learning refers to sets of algorithms (techniques) that can
"learn" from experience
Given inputs and expected output can automatically learn to associate
patterns in the input to the output and generalize on unseen inputs.

Outputs could be (a) real number(s): regression (photon energy)
Or it could be a classification into one of several classes (γ v e− v µ−)

As opposed to traditional algorithms which are explicitly
pre-programmed to always act in specific ways
Example: Does this signal in my detector correspond to a photon or a
hadron? Feed the algorithm thousands of (simulated) photons &
hadrons, and it will learn to distinguish them

More specifically, we will build a parameterized model which gives a
"probability"* for an input datapoint to be photon or hadron, and the
algorithms changes the parameters to better classify the photons or
hadron examples you feed it

* Typically, its not actually a probability, but easier to think of it that way
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Classification

Lets consider classification problems
In classification we have some data which could belong to one of
several classes
We have some well-known data and we want to train a classifier which
will tell us what class some new, unknown data comes from
E.g. classify images of pets into dogs and cats
Classify energy depositions in a calo into photons and electrons
Based on several indicators (age, height, weight, etc.) say whether
someone will get diabetes

Decisions can be complicated: many input variables with many
non-trivial relationships differing by class, modelling this in general is
called Multi-Variate Analysis (MVA)
The goal is to find a decision boundary, one one side of the boundary
we classify the input as a γ, on the other its a hadron
We will start with a straightforward technique called Decision Trees
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Decision Trees

Is it raining?

No umbrella

No

Take an umbrela

Yes

Decision trees give a path to a result based on some conditions

There could be several inputs, with multiple kinds of outputs
But always evaluate from top node down

For true/false boolean inputs, straightforward to enumerate all options
Write down all the paths through the questions, add a label at the end
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Some Decision Tree Examples

Muon pT > 30 GeV

Not Selected

No

Muon |η| < 2.4

Not selected Selected

Yes

In the case of real valued inputs, we have to be more careful
We can create left/right branches by asking for a value to be
above/below some cut-off

We turn a real value variable into a binary decision at each node
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Decision Trees with Real Numbers

Given a set of data we want to split into red and blue spaces

The decision tree will partition the problem space into discrete regions
Can add levels to split the space up further and further
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Decision Trees with Real Numbers

x2 > 0.5

Red Blue

Given a set of data we want to split into red and blue spaces
The decision tree will partition the problem space into discrete regions

Can add levels to split the space up further and further
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Decision Trees with Real Numbers
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Decision Trees with Real Numbers

x2 > 0.5
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Training Decision Trees: CART algorithm, GINI coefficient
To train the decision tree, scikit learn (and TMVA?) uses the CART
algorithm to minimize the Gini coefficient G
G = 1−∑k p

2
k summed over the classification classes k , where pk is

the fraction of data in class k
If all the data is in one class then G = 0, if the data is split evenly over
n classes then G = n−1

n
If the data is more unevenly split, the G value goes closer to 0

The CART algorithm takes a dataset of m datapoints and tries to
make a split into two branches left and right, which minimize
J = mleft

m Gleft +
mright

m Gright

Its trying to minimize the number-of-datapoints-weighted-average
Gini-coefficient of the left-right split at each node

After the split, it then applies the same logic again onto each subtree
until

A stopping parameter condition is met, i.e. the user can say only go to
a certain depth
Each leaf (split dataset) only contains one class
It can’t find a split which reduces the Gini-coefficient

A leaf is a final decision, i.e. a node with no more splits
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Some Data

You can see its overfitting,
producing high variance changes
in decisions based on the exact
data, which probably won’t
generalize to unseen data

Some synthetic data (i.e.
created artificially) we will use to
illustrate today’s concepts

The circles are the datapoints,
labelled by colors

Has 3 categories with 2
variables, lots of overlaps
Running a decision tree over the
data gives a complicated
decision boundary

The background colors show
the decision for each point
after training the tree
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Training and Testing

Without a priori knowledge of the
data distribution, we need some way
to test if we are overfitting, using
the data itself
We can do this by setting aside
some portion of the data, the
testing set, and only train on the
remaining data, the training set
If we take 80% of the previous page
data and fit the tree, overlaying the
output shows clear overtraining (e.g.
blue in cut out blocks of green)
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Bias vs Variance

We can see this particularly clearly by
plotting accuracy (fraction of data
classified correctly) against the depth of
the tree (= complexity)

As we increase the max depth, the training set gets more accurate, the
test set diverges, and becomes less accurate, this is overfitting
Bias: the difference between our model prediction and the datapoints

A high bias model has large differences between the datapoints
A model which doesn’t have enough parameters underfits the data

Variance, a measure of the fluctuations of the data or model, high
variance models are typically fitting the intrinsic noise of the data

A high variance model with too many parameters overfits the data
The bias-variance trade off is a theorem which tells us that you trade
off model bias for variance and vice-versa, best to find a trade-off
point between the two regions

I.J. Watson (USeoul) Introduction to Machine Learning KCMS 2021.11.30 11 / 38



Boosting

In order to reach that point, we need a high capacity model, one
which has enough freedom to model our data
We can use ensemble classifiers to increase performance
In Boosting, we start with a weak classifier (barely better than random
chance), and put them together to form a strong classifier
This is done by weighting the data for each classifier we train
E.g. start with a depth 1 decision tree, we can weight the misclassified
data higher, and the correctly classified data lower
Train a depth 1 tree on the reweighted data, this gives a different tree,
since the gini index will be calculated based on the weights, instead of
just taking the number of entries in each bucket
This scheme is AdaBoost, there are also other variations, such as
Gradient boosting, but in all the idea is to take a weak classifier and
train up an ensemble of strong classifiers
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Boosting

Left shows a regression task, but the idea is the same, the further the
curve is from a point, the higher its weighted in the next tree
How quickly the weights change are controlled by the learning rate
After training, the output is taking as a weighted average of the trees,
the weight of each tree proportional to the number of correctly
classified training datapoints it produced

Also produces a smoother decision boundary (average out fluctuations)

See e.g. chapter 7 of "Hands-On Machine Learning with Scikit-Learn,
Keras, and TensorFlow, 2nd Edition" for more details
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Boosting Decision Trees

When we boost the decision tree learning, we end up with a Boosted
Decision Tree (BDT), which really is a forest of decision trees
Various number of depth 1 decision trees trained with AdaBoost on
the previously shown dataset
If the learning rate is too high, the boosting overcorrects too quickly,
and we don’t get good testing results
With a lower learning rate, the boosting helps us get a more accurate
classifier without overtraining
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Logistic Function
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The logistic function is defined as f (x) = 1
1+e−x

Looks like a classic "turn-on" curve

"Logistic regression" fits this function from several variables
Concentrate on the case of two classes (cat/dog or electron/photon),
and ask what we want from a classifier output

We need to distinguish between the two classes using the output:
If the value is 0, it represents the classifier identifying one class (cat)
If its near 1, the classifier is identifies the other class (dog)
Thus, we need to transform the input variables into 1D, then pass
through the logistic function
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Mathematics of Logistic regression

Setup: we have data from two different classes, which can be
described by the same independent variables, and we want to
distinguish them based on those independent variables
We want to build a function such that data from one class goes close
to 1, from the other close to 0
We will build a linear function of the variables, then pass it through
the logistic function, and try to minimise the distance of data from 0
(for one class), or 1 (for the other)
yi = f (~β · ~xi ) + εi , yi = 0 if xi from class 0, 1 if xi from class 1

~β · ~xi = β0 + β1x1 + . . . βkxk and f (x) = 1
1+e−x the logistic function

Find β which minimizes a loss function e.g.:
MSE = 1

m ∑i (f (xi )− yi )
2

We end with the optimized parameters for the intercept and
coefficients

The intercept sets where the turn occurs
Coefficients set how quickly the turn on occurs, larger coeff. imply fast
turn on (sweep across the logistic function quicker)
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Illustration: 1D Projection

~β ·~x is a projection of the data onto a line
Red and blue are two classes which can be measured in (x1, x2)

We can take the mean of each class (left), form a line between, then
project the data onto the line (middle) giving a distribution (right)

We have reduced the 2D data into a 1D projection

After the projection, the logistic rejection chooses a cut point (via β0)
then sends things below the cut to 0, above to 1
Here, we see some separation between the classes but a lot of overlap.
We can do better

I.J. Watson (USeoul) Introduction to Machine Learning KCMS 2021.11.30 17 / 38



Illustration: Better Fit

Finding the Fisher discriminant for our illustrative dataset shows that
these two classes are fully separable
The Logistic Regression will place the cut point between the data and
so all red go to 0, blue go to 1 after passing through the logistic
function

https://medium.freecodecamp.org/an-illustrative-introduction-to-fishers-linear-discriminant-9484efee15ac
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Some very simple examples for simple logistic regression

Let’s think about using logistic regression to approximate some simple
binary functions, i.e. data in 2D, output red or blue, logistic regression
will turn on at a boundary line
OR and AND gates

OR is 0 (red) if both input are 0, 1 (blue) otherwise
AND is 1 if both inputs are 1, 0 otherwise

Can we find logistic function approximations for this?
That is, f (x1, x2) returns approximately 1 or 0 at the indicated points

Yes! Take the projection perpendicular to the line
and have the logistic turn on at the line

e.g. f (x1, x2) = σ(2x1 + 2x2 − 1) for OR,
f (x1, x2) = σ(2x1 + 2x2 − 3) for AND [σ is our logistic function]
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Very simple example with issues for Logistic Regression

Now consider the XOR gate: 1 if both inputs are the same, 0 otherwise
The XOR gate can’t be generated with a logistic function!
Try it: no matter what line you draw, can’t draw a logistic function
that turns on only the blue!
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How to Fix: more logistic curves!

Can fix by having 2 turn-on curves, one turning on either of the blue
points, then summing the result
f (x1, x2) = σ(2x1 + 2x2 − 1) + σ(−2x1 − 2x2 + 1)
In general, this type of issue (complicated decision boundaries) is why
we reach toward multivariate methods such as decision trees and
neural networks
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The Feed-Forward Neural Network

x1

x2

Input
layer

h1

h2

Hidden
layer

y

Output
layer

Consider the structure of what we just made
y = f (x1, x2) = σ(−1+ 2x1 + 2x2) + σ(1− 2x1 − 2x2)

Decompose the function into:
the input layer of x̂ ,
the hidden layer which calculates hi = βi · x then passes if through the
activation function σ, ("logistic function" called "sigmoid" in NN)

as in logistic, there is an extra β0, called the bias, which controls how
big the input into the node must be to activate

the output layer which sums the results of the hidden layer and gives y
y = 0+ 1 · σ(h1) + 1 · σ(h2)
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Feed-Forward Neural Network

x1

x2

x3

Input
layer

h1

h2

h3

h4

h5

Hidden
layer

y1

y2

y3

Output
layer

In general, we could have several input variables, and output variables
In the case of classification, we would usually have a final softmax
applied to ŷ , but could use any activation ϕ here also

softmax normalizes the output layer, so the outputs add to 1
The output layer then acts like a probability for each category
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Feed-Forward Neural Network

x1

x2

x3

Input
layer

h11

h12

h13

h14

Hidden
layer 1

h21

h22

h23

h24

h25

Hidden
layer 2

y1

y2

y3

Output
layer

We can even have several hidden layers
The previous layer acts the same as an input layer to the next layer
The layers can build up more complex features to discriminate with

We call each node in the network a neuron
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Aside: Universal Approximation Thereom

Let ϕ : R→ R be a nonconstant, bounded, and continuous function. Let Im
denote the m-dimensional unit hypercube [0, 1]m. The space of real-valued
continuous functions on Im is denoted by C (Im). Then, given any ε > 0 and any
function f ∈ C (Im), there exist an integer N, real constants vi , bi ∈ R and real
vectors wi ∈ Rm for i = 1, . . . ,N such that we may define:

F (x) =
N

∑
i=1

vi ϕ
(
wT
i x + bi

)
as an approximate realization of the function f ; that is,

|F (x)− f (x)| < ε

for all x ∈ Im. In other words, functions of the form F (x) are dense in C (Im).
This still holds when replacing Im with any compact subset of Rm.

In brief: with a hidden layer (of enough nodes), any (sensible) function
f : Rm → R can be approximated by a feed-forward NN

Any (sensible) activation ϕ can work, not just σ

Shows we won’t run into the XOR issue with a neural network
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Training a Neural Network

→
What does it mean to train a neural network?
Consider the XOR network
There we set by hand, but could try to "train" the network
Start with random weights and biases, reduce the loss function
C (x , y |w , b) = ∑i |y truei − y(xi )|2 where i ranges over our 4 samples
(xi , yi ) and y(xi ) is the network output

Start with random weights so that different random features can be
extracted by different nodes
As before, we train by trying to minimize the mean-squared error
There exists an efficient algorithm for doing this with neural networks
called backpropagation (shown in backup)
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Quark-Gluon Jet Classification

Quark and gluon jet production has subtly different properties
Gluon jets are more radiative so tend to be wider, produce more and
softer particles, should tend to CA/CF = 9/4 at high pT

Proposed uses for discirmination in new physics studies, where more
high-energy quark jets are expected than gluon jets
At CMS, BDTs have been developed for q-g discrimination using
variables constructed from PF inputs

Number of jet consitutents, pTD =

√
∑i p

2
T ,i

∑i pT ,i
, jet ellipse axis lengths

"Quark-gluon Jet Discrimination At CMS", Cornelis for CMS (arxiv:1409.3072)
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Analysis of QG jets from CMS opendata

We will use some simulated data from the CERN Open Data Portal to
try out some of the techniques

Already online, so easy to download and analyse
But, was obtained using similar techniques to what Prof. Lee taught
last week (analysing jets with CMSSW): producing ntuples from the
MiniAOD output

We can use SWAN to setup an environment and access the data
You could also work locally in the CMSSW environment you set up last
time, but you will not be able to stream the data as I will be showing,
you will have to download the file:

http://opendata.cern.ch/record/12100/files/assets/cms/
datascience/JetNtupleProducerTool/JetNTuple_QCD_RunII_13TeV_
MC/JetNtuple_RunIISummer16_13TeV_MC_1.root

SWAN is the "Service for Web based ANalysis", which allows you (if
you have a CERN account!) to easily run analyses on CERN’s
infrastructure, using a jupyter-based environment

https://swan.web.cern.ch
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Using SWAN

Lets load up swan, create a directory for our analysis, open a notebook and
try to load up the file:

import ROOT as rt
# A little setup for drawing
rt.gStyle.SetOptStat(0)
cvs = rt.TCanvas()
cvs.SetCanvasSize(800,600)

fname = ("root://eospublic.cern.ch//eos/opendata/cms/datascience/JetNtupleProducerTool/" +
"JetNTuple_QCD_RunII_13TeV_MC/JetNtuple_RunIISummer16_13TeV_MC_1.root")

f = rt.TFile.Open(fname)
f.ls()

tree = f.AK4jets.jetTree

For step by step instructions on starting swan, see p21. onward of:
https://indico.lip.pt/event/410/contributions/1043/attachments/1002/1149/Lisbon_TMVA_Tutorial.pdf

For more information on the various options, see the user guide:

https://root.cern.ch/download/doc/tmva/TMVAUsersGuide.pdf
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Basic plots

We have a tree with one entry per jet
We can find light quark (gluon) jets using isPhysUDS (isPhysG)
Lets draw a basic variable, the pT of the jets of the two different categories
using the builtin TTree::Draw capabilities

tree.SetLineWidth(2)
tree.SetLineColor(rt.kBlue)
tree.Draw("jetPt>>gpt", "isPhysG", "")
tree.SetLineColor(rt.kRed)
tree.Draw("jetPt>>qpt", "isPhysUDS", "same")
rt.gpt.SetTitle(";p_{T} [GeV];# of Jets")
l=rt.TLegend(.6,.7,.9,.9)
l.AddEntry(rt.gpt, "Gluon")
l.AddEntry(rt.qpt, "UDS")
l.Draw()
cvs.Draw() # needed to display the output in Jupyter; don't need this on the command line

The pt spectra are slightly different, we’d need to consider this in a real
analysis
Do the same for the qg separation variables:

QG_mult the multiplicity
QG_axis2 the size of the minor axis
QG_ptD the ptD variable
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Prepare the Data for TMVA
The Toolkit for MultiVariate Analysis (TMVA) is a library built into ROOT for doing
machine learning
We need to start by initializing TMVA and building a Factory which holds our analysis,
and loading the data with a DataLoader

# we can use this file later to analyse the results
outputFile = rt.TFile.Open('TMVA_output.root', 'recreate')

# we give it a name which it uses in the output, the outputfile, and
# some options (for instance, remove ! in front of Silent to suppress
# output)
factory = rt.TMVA.Factory('TMVAClassification', outputFile,

'!V:!Silent:Color:!DrawProgressBar:AnalysisType=Classification')

# create a dataloader and tell it the tree it sould use for signal and background
loader = rt.TMVA.DataLoader('dataset')
# in our case, the same tree holds signal and background, we will tell
# it later how to select the actual signal and background events we
# could also optionally add weights if we had several trees for
# e.g. different background processes
loader.AddSignalTree(tree)
loader.AddBackgroundTree(tree)

# now we define the variables to be used in the analysis, we can also
# give it a name for displaying nicely
loader.AddVariable('QG_mult', "multiplicity", "")
loader.AddVariable('QG_axis2', "#sigma_{2}", "")
loader.AddVariable('QG_ptD', "p_{T}D", "")

# finally tell it how to read signal and background and prepare the test/train
loader.PrepareTrainingAndTestTree("isPhysUDS", "isPhysG", # signal cut, then background cut

"nTrain_Signal=4000:nTrain_Background=7000:SplitMode=Random:NormMode=NumEvents:!V")
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Train with TMVA

Now we can "book" the methods we want TMVA to run, then train
them, test them and evaluate them
We can run as many as we want. Lets do a BDT and a Neural
Network, see the user guide for more options

In the NN, the HiddenLayers takes a comma separated list of the
number of neurons in each layer. N is the number of input variables

# Boosted Decision Trees
factory.BookMethod(loader,rt.TMVA.Types.kBDT, "BDT",

"!V:NTrees=200:MinNodeSize=2.5%:MaxDepth=2:BoostType=AdaBoost:AdaBoostBeta=0.5:"+
"UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20")

# Multi-Layer Perceptron (= Neural Network)
factory.BookMethod(loader, rt.TMVA.Types.kMLP, "MLP",

"!H:!V:NeuronType=tanh:VarTransform=N:NCycles=100:HiddenLayers=N+5:"+
"TestRate=5:!UseRegulator")

# Train
factory.TrainAllMethods()
# Test
factory.TestAllMethods()
# Evaluate, these will compute various quantities of interest and output them into the output file
factory.EvaluateAllMethods()

# the output file will have the results of the training
outputFile.Close()
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Output Distributions

A good overtraining check is to look at the output distribution for
signal and background, comparing testing and training
A well-trained model should have those distributions match each other
An overtrained model will have the test distribution performing worse
than the training

# save pdfs instead of png
rt.TMVA.Config.Instance().fVariablePlotting.fPlotFormat = \

rt.TMVA.Config.Instance().fVariablePlotting.kPDF
TMVA.mvas("TMVA_output.root", rt.TMVA.kCompareType)

# TMVA will make a canvas for each machine learning method
# check which is which
[c.GetTitle() for c in rt.gROOT.GetListOfCanvases()]

# and draw the one of interest
rt.gROOT.GetListOfCanvases().At(0).Draw()
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ROC Curves

The Receiver Operating Characteristic (ROC) curve was defined during
WW2 for displaying the abilities of radar receiver operators
Gives the true positive rate (correctly identified signal) versus false positive
rate (background incorrectly identified as signal) [TMVA shows 1−FPR]
The area under the curve (AUC) is often used to summarize a classifier’s
performance

0.5: completely random classifier
1.0: perfect classifier
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ROC curves in TMVA (and python)

Note, TMVA puts TPR on the x-axis, and shows 1-FPR on the y-axis,
so we want to have the classifier move to the top right, not top left

# we can do it through a factory method
cvs = factory.GetROCCurve(loader)
cvs.Draw()
bdt_auc = factory.GetROCIntegral(loader, "BDT")
mlp_auc = factory.GetROCIntegral(loader, "MLP")
print(f"AUCs: BDT {bdt_auc:.3f}, MLP {mlp_auc:.3f}")

# or similar to the way we did the output distributions, using the output file
rt.TMVA.efficiencies("dataset", "TMVA_output.root")
[c.GetTitle() for c in rt.gROOT.GetListOfCanvases()]
rt.c.Draw()

Note that on the command line, we can run rt.TMVA.TMVAGui("outputFile.root") (or
TMVA::TMVAGui("outputFile.root") in a root command line) and see a GUI with
options to display various results, and some of the GUI options (mvaeffs) haven’t been
ported to be usable in the notebook (as far as I can tell), and they say they will modernize
so sometime in the future all the plots should be drawable with the factory
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TMVA Reader

When you are happy with your training, you will want to apply it to
the data
To do this, we save out the trained MVA and load it with a Reader
In python we need to load our variables into an array, so it can
interface with the C++ code (which uses pointers)
The weights are saved after your training in <dataset
name>/weights/<factory name>_<method>

from array import array
reader = rt.TMVA.Reader("!Color:!Silent:!V")
mult = array('f', [0.])
axis2 = array('f', [0.])
ptD = array('f', [0.])
reader.AddVariable("QG_mult", mult)
reader.AddVariable("QG_axis2", axis2)
reader.AddVariable("QG_ptD", ptD)
reader.BookMVA("BDT", "dataset/weights/TMVAClassification_BDT.weights.xml")

# set your variables and evaluate (you would do this in an event loop)
ptD[0] = 0.8; mult[0] = 5; axis2[0] = 0.03
reader.EvaluateMVA("BDT")
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Running over a sample

Lets take the second sample in the public data, and run our analyser, saving the output for quark v gluon (of course
in real data we wouldn’t have that tag. . . ).

fname = ("root://eospublic.cern.ch//eos/opendata/cms/datascience/JetNtupleProducerTool/" +
"JetNTuple_QCD_RunII_13TeV_MC/JetNtuple_RunIISummer16_13TeV_MC_2.root")

f = rt.TFile.Open(fname)
cvs = rt.TCanvas()
hq = rt.TH1F("quark", ";BDT output;Arb. Units", 100, -0.6, 0.6)
hg = rt.TH1F("gluon", ";BDT output;Arb. Units", 100, -0.6, 0.6)
for jet in f.AK4jets.jetTree:

if not jet.isPhysUDS and not jet.isPhysG: continue
ptD[0] = jet.QG_ptD
mult[0] = jet.QG_mult
axis2[0] = jet.QG_axis2
bdt = reader.EvaluateMVA("BDT")
if jet.isPhysUDS: hq.Fill(bdt)
if jet.isPhysG: hg.Fill(bdt)

# DrawNormalized divides each histogram by the total number of entries
# before plotting, so we can see the shape of the distribution and
# ignore the difference in number of light quark v gluon jets
hg.DrawNormalized()
hq.DrawNormalized('same')
cvs.Draw()
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Exercises

Draw all the input variable distributions
Try changing the parameters of the ML methods, can you improve the
performance?

For the BDT you could try changing the learning rate of AdaBoost
(called AdaBoostBeta by TMVA) and the number of trees
For the neural network you could try changing the size and number of
hidden layers

Look through the TMVA tutorials for more examples of how to use
TMVA

Note, that some of what I showed today is a bit of an older style,
which is slowly being replaced. The current version of the tutorials use
RDataFrame and RReader for instance, you should look into these,
since it will be the future, but most of the material online will be closer
to what I showed today (though a lot will be in C++!)
There are also options to integrate TMVAs data loading and evaluating
facilities with modern libraries like XGBoost for BDTs, Tensorflow for
Deep Learning, and so on
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Backup
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Analogy: Steepest descent

Question: How do we actually train these networks?

A climber is trying to find his way down a
mountain in deep fog, how should he
proceed?
One idea is to try to always go downhill the
fastest way possible
So, he figures out which direction has the
steepest descent (ie which way is downhill),
then takes a step in that direction
After the step, he checks again, and takes
another step
He keeps proceeding in this manner until he
cant go downhill anymore, he’s reached the
bottom
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Gradient Descent

From calculus, ∇f (x) gives the direction of largest increase of f at x
(if its 0, we are at a minimum and done)
Equivalently, −∇f (x) gives direction of largest decrease, so
f (x− γ∇f (x)) < f (x) (at least, for some γ small enough)
We will define a sequence xi to find the minimum:

Start with some random position x0
Iterate:

Find xn+1 = xn − γn∇f (xn)
Stop if |f (xn+1)− f (xn)| < ε, i.e. we’re not reducing further, so we’re
close to the minimum

Return the final xn
γn can be different for each iteration, extensions to GD keep track of
how quickly parameters are changing to update γ also
ε is the tolerance, how close to a minima do we need to be before
stopping (again, there are various criteria we could choose here)
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Example function

Lines are contours of equal value
Shows how the algorithm picks out different paths depending on
starting point
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Training Neural Networks: Backpropagation

The algorithm to train neural networks is called backpropagation
Its essentially a gradient descent implemented taking the network
structure into account to speed up evaluation of the partials
To apply gradient descent, we need a function to minimize, this is our
loss function from earlier

L(xi ; θ) = ∑i |f (xi ; θ)− yi |2 for inputs xi with known output yi
We start with the parameters θ set to arbitrary values, usually picked
from e.g. the unit gaussian
We run a forward pass through the network and calculate the loss,
keeping track of the values at the intermediate nodes
Using the chain rule, calculate the derivates for all weights backward
from the loss to the higher layers to the inputs, in a single pass
Propagate changes based on the gradient ∆θi = −η ∂L

∂θi

For more on how backpropagation works:
http://neuralnetworksanddeeplearning.com/chap2.html
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